Module code: ENG3164

Module Overview

A lecture and tutorial based module, which will build on earlier modules to provide a deeper understanding and broader appreciation of materials for engineering applications, with an emphasis on deployment in challenging environments requiring a combination of properties.  The first part of the module will examine the processing-microstructure-properties that underpin materials selection and deployment; this will be complemented by a brief overview of techniques used to characterise materials.

The second part of the module examines specific engineering materials including steels, aluminium alloys, titanium alloys, nickel-based Superalloys and engineering ceramics. Specific engineering topics are examined which include biomaterials, surface engineering, joining of materials and materials selection. Throughout the second part of the module specific applications are explored. A major two-hour case study is explored which brings together many of the major materials classes and all but one of the engineering topics to show case the role of engineering materials in a major engineering challenge (currently, undersea oil extraction). 

Module provider

Mechanical Engineering Sciences

Module Leader

WHITING MJ Dr (Mech Eng Sci)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

JACs code: H990

Module cap (Maximum number of students): N/A

Module Availability

Semester 1

Prerequisites / Co-requisites

Completion of the progress requirements of Level HE2.

Module content

Indicative content includes:

Revision and extension of previous information on the properties of materials, extending into complex and/or non-mechanical properties not previously studied, with an emphasis of the influence of microstructure (with a consideration of crystal structure) and how this is achieved through processing.  [6L]
An overview of materials selection.  The importance of resource management (materials and energy) and the need to design for end of life: re-use and recycling. [3L]
Tools for looking at materials – a basic introduction to diffraction, microscopy and spectroscopy [3L]
The importance of surfaces, including an introduction to tribology.  Ways of changing surfaces – case hardening through to nanocomposite coatings. [6L]
Joining strategies and technologies, including joining dissimilar materials, with an emphasis on dealing with complex geometries and/or harsh environments [1L and embedded in other lectures]
Materials for high temperature applications –Case study – the jet engine (high temperature components) – principally the metallurgy of blades and discs but to include the use of ceramics as thermal barrier coatings, abradable seals etc. [6L]
Biomaterials – requirements, range of materials used from bio-inert to bioactive and resorbable.  Overview of applications, including Case Study – total hip replacement – stem, including coating, femoral head and cup [3L]
Engineering ceramics: properties and applications [3L]
Major engineering Case Study: BP [2L]

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAM 2 HOURS 80
Coursework ASSIGNMENT 20

Alternative Assessment


Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate

(i) An understanding of the interplay between processing, microstructure and properties across a range of engineering materials, (ii) demonstrate an understanding of materials characterisation techniques, (iii) an appreciation, and critical understanding, of why different materials are used for specific engineering applications.

Thus, the summative assessment for this module consists of:

·         Assignment [learning outcomes 1, 2 and 3]; 16 hours;   (20%).

·         Examination [learning outcomes 1, 2, 3, 4 and 5]; 2 hours (80%).

Formative assessment and feedback

Formative verbal feedback is given in tutorials.
Formative Multiple Choice Test conducted in one lecture slot to give feedback on key principles underpinning learning outcomes 1 and 2.
Written feedback is given on the coursework assignment.

Module aims

  • To build on the overview of materials provided at Year 1 and to provide a deeper understanding of processing-microstructure-property relationships in all major classes of materials.
  • To provide an introduction to the techniques used to characterise materials.
  • To explain the rationale underpinning the selection and subsequent deployment of materials for use in a range of environments, which require a number of requirements to be met simultaneously.

Learning outcomes

Attributes Developed
1 Describe the interplay between processing, microstructure and properties across a range of materials. (P2, SM1b, SM3b, EA2) K
2 Describe and select appropriate techniques to obtain qualitative and quantitative microstructural information. (P2, SM1b, SM3b) KC
3 Explain the rationale for using specific materials in a range of applications. ( P2, SM1b, EA2, EL2, P6, D2) KCP
4 Identify case studies that demonstrate how to optimise a material to meet a number of complex requirements. ( P2, SM1b, EA2, EL2, P6, D2) CPT
5 Provide a critical comparison of the suitability of a number of materials for an existing or proposed application, taking into account sustainability issues. (P2, D2, EL2) KCPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 104

Lecture Hours: 35

Tutorial Hours: 11

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

(i) Consolidate an understanding of the relationships between microstructure, processing and properties, (ii) introduce and develop an understanding of the concept of materials characterisation, and (iii) explore materials selection as an engineering problem. These three areas are achieved principally through lectures and tutorial classes. During the first 6 weeks, this is complemented by a formative assignment.

The learning and teaching methods include:

3 hours of lectures per week for 11 weeks
1 hour tutorial per week for 11 weeks
2 hours of revision lectures
Assignment work.

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list


Programmes this module appears in

Programme Semester Classification Qualifying conditions
Biomedical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Biomedical Engineering MEng 1 Optional A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Aerospace Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Aerospace Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2018/9 academic year.