Module code: ENG3166

Module Overview

This module provides an introduction (with examples of applications) to the fundamental theory of control systems engineering alongside a comprehensive overview of the methods of analysis of vibration systems and ways to employ to reduce vibrations is provided.

Module provider

Mechanical Engineering Sciences

Module Leader

GRUBER P Dr (Mech Eng Sci)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

JACs code: H310

Module cap (Maximum number of students): N/A

Module Availability

Semester 1

Prerequisites / Co-requisites

ENG2094 Control and ENG2088 Solid Mechanics 1

Module content

Indicative content includes:


System dynamic performance analysis and control system design
Control systems using three-term PID controllers
Control system simulation (in frequency and time domain) using Matlab-Simulink
Fundamentals of state-space control
State space modelling of multiple-degree-of-freedom systems


     Vibration of discrete systems

Undamped free and forced vibration of a two-degree of freedom system
Damped and undamped vibration absorbers

     Vibration of continuous systems

Lateral vibration of a string
Longitudinal vibration of a bar
Lateral vibration of a beam
Whirling of shafts

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAMINATION (2 HRS) 70
School-timetabled exam/test IN-SEMESTER TEST (40 MINS) 15
Coursework COURSEWORK 15

Alternative Assessment

Coursework in lieu of in-class test.

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate

understanding of scientific principles, methodologies and mathematical methods as well as the ability to describe particular systems and processes in the final examination. The in-semester test allows students to demonstrate that they can solve vibration problems within a given time. The control-related coursework tests research skills and report writing as well as their ability to develop control models and comment critically on the assumptions and limitations inherent in their application.

Thus, the summative assessment for this module consists of:

In-semester test            [ Learning outcomes 3, 4 ]                 (40 min test)      {15%}
Control coursework        [ Learning outcomes 1, 2 ]                 (9 hours)            {15%}
Examination                  [ Learning outcomes 1, 2, 4, 5, 6 ]      (2 hours)           {70%}

Formative assessment and feedback

Formative verbal feedback is given in tutorials
Written feedback is given on the coursework assessments

Module aims

  • a working knowledge of classical linear feedback control that extends to systems design concepts
  • a systematic understanding and critical awareness of free and forced vibration of two-degree of freedom systems
  • a comprehensive knowledge of vibration absorber design
  • a deep understanding and awareness of vibrations of real structures
  • a knowledge of the analytical methods of investigating vibration of continuous systems

Learning outcomes

Attributes Developed
1 Design and analyse control systems which may be encountered in mechatronic products and industrial systems (SM1b/m, EA1b) KC
2 Analyse, model and predict control system performance from the problem specification (EA1b-4b) KC
3 Identify and evaluate free and forced vibrations (SM1b/m, EA2) KC
4 Explain the principles of vibration absorbers and design and assess them (EA1b-4b, G1) KCT
5 Describe the procedures required to analyse discrete and continuous systems (EA1b) KCT
6 Analyse the vibration of continuous systems using analytical techniques (SM1b/m,EA1-4b,G1) KC

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 106

Lecture Hours: 33

Tutorial Hours: 11

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

introduce the design and analysis principles of control and vibrations systems through theory with worked examples. This is delivered principally through lectures and tutorial classes, and includes an in-semester test on vibrations and a group conducted control-related coursework involving the development of a Matlab/Simulink model of a basic system.

The learning and teaching methods include:

3 hours lecture per week x 11 weeks
1 hour tutorial (in groups) x 11 weeks
In-semester test (40 min test, 9 hours preparation)
Control coursework (9 hours)



Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

Reading list for CONTROL & DYNAMICS :

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Biomedical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Biomedical Engineering MEng 1 Optional A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Automotive Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Automotive Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2018/9 academic year.