SPACE SYSTEMS DESIGN - 2018/9

Module code: ENGM273

Module Overview

Module purpose:  This is a key module for students interested in becoming space systems engineers, or in working in a related field. It introduces the student to the key principles and techniques of spacecraft systems design, through real-world examples, and is delivered by a lecturer with more than 25 years practical experience of designing and building spacecraft systems and payloads.

Module provider

Mechanical Engineering Sciences

Module Leader

UNDERWOOD CI Prof (Elec Elec En)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

JACs code: H400

Module cap (Maximum number of students): N/A

Module Availability

Semester 1

Prerequisites / Co-requisites

None

Module content

 

Indicative content includes:

Designing for Space: Elements of a space mission; the physical environments of spacecraft manufacture, launching and space and their impact on spacecraft system design.  

Mechanical Design: Launch vehicle interface; frameworks and structures – forms and requirements; stress analysis, loads and stiffness, elastic instabilities, vibration, materials selection, structural analysis, verification.

Thermal Design: Temperature limits; thermal sources and heat transport mechanisms in space – conduction, black-body radiation; Stefan-Boltzmann Law emissivity, absorptivity; greybody assumptions, Kirchhoff’s law, view factors; thermal balance, thermal modelling, finite difference method; thermal control elements – passive and active, thermal design and implementation.

Mechanisms and Optics: Bearings and lubrication; flexures, flexure hinges and tape booms; electric motors and drives; pyrotechnics and one-shot devices; continuously rotating and intermittently operated mechanisms. Materials selection; optical materials, mountings, alignment, and stray-light control. Basic optics, diffraction limits; fields of view; sensor topologies, lens and mirror based telescopes; filters and optical bench layouts.

Attitude & Orbit Control Systems: Attitude Determination Control and Stabilisation (ADCS) systems: Body dynamics – forces, torques, momenta, inertia matrix, kinematics. Attitude determination sensors – Sun sensors, Earth horizon sensors, star cameras, magnetometers, inertial sensors. Attitude control system technologies – reaction control systems, magnetorquers, gravity-gradient booms, reaction and momentum wheels, control-moment gyros; ADCS requirements and capabilities; small satellite ADCS. Orbit control systems: choice of propellant; liquid engines, solid motors; hybrid engines; arc-jets, resistojets, ion-thrusters.

Power Systems: Power generation – fuel cells, RTGs, nuclear fission reactors, solar arrays; solar cell I-V characteristics – thermal and radiation effects; power storage – battery technologies, charge/discharge profiles and effects on cell lifetimes, super-capacitors; power regulation and monitoring, regulated and unregulated bus topologies; Energy budgets and efficiencies. Harnesses, shielding and grounding policy. Component protection, redundancy, and good design practices.

TT&C, RF and OBDH Systems: Telemetry, Tracking and Command (TT&C) systems, space and ground segments, tracking schemes, basic telemetry and telecommand systems, packet-switched systems, CCSDS, simple RF link equation, Eb/N0 and data robustness. On-Board Data Handling (OBDH) schemes and standards; digital interfaces, On-Board Computers (OBCs), radiation effects and mitigation – error detection and correction (EDAC) coding schemes; software design principles.

Manufacture and AIT, Operation and Disposal: PA/QA, reliability issues; manufacture process; testing: mechanical properties (MoI, CoG); vibration, shock and acoustic testing, EMC test; thermal vacuum test; solar simulation; launch campaign. Operation and disposal.

Assessment pattern

Assessment type Unit of assessment Weighting
Examination EXAMINATION (2 HOURS) CLOSED BOOK 80
Coursework COURSEWORK: FORMAL WRITTEN REPORT 20

Alternative Assessment

Not applicable.

Assessment Strategy

The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the learning outcomes. The written examination will assess the knowledge and assimilation of terminology, concepts and theory of spacecraft systems, as well as the ability to analyse and find solutions to problems of the mechanical and electrical design of spacecraft systems. The coursework exercise will examine the ability of the student to apply the knowledge gained in this module to provide a space platform design to meet a specific space mission objective and its associated design requirements.

Thus, the summative assessment for this module consists of:

Thus, the summative assessment for this module consists of:


Coursework      [ Learning outcomes 2, 3 ]      (30 hours)                {20%}
Examination     [ Learning outcomes 1, 2, 3 ]   (2 hours)                 {80%}


Formative assessment and feedback

For the module, students will receive formative assessment/feedback in the following ways.


During lectures, by question and answer sessions
During tutorials/tutorial classes
By means of unassessed tutorial problem sheets (with answers/model solutions)
Via the marking of written reports
Via assessed coursework


 

 

Module aims

  • Through a series of lectures, exercises and coursework, the module aims to give the student an introduction to the design and construction of spacecraft, showing how the mission and the space environment, itself, constrain the engineering. The module forms a key part of the MEng Aerospace programme. Students who complete this module, along with the other modules in the Aerospace Engineering pathway, should have gained sufficient background knowledge to begin a career in aerospace engineering with a specialisation in space, and will find the material invaluable in their early career development, as they work on real space missions.

Learning outcomes

Attributes Developed
1 Knowledge and understanding of the physical and mathematical principles underpinning the design and engineering of spacecraft and the ability to apply this knowledge to a variety of spacecraft subsystem design problems and space mission scenarios, including ones not previously encountered.  (SM1m, SM2m, SM3m) KC
2 Knowledge and understanding of the engineering tools and approaches to problems of space system design and to have a grasp of the development and future possibilities of the topic.  (EA1m, EA3m, EA5m) KPT
3 Ability to select appropriate technical solutions for spacecraft sub-systems for a variety of space mission scenarios. (EA1m, EA6m) KPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Workshop Hours: 30

Independent Study Hours: 87

Lecture Hours: 33

Methods of Teaching / Learning

The learning and teaching strategy is designed to give students a good understanding of the principles and techniques involved in the mechanical and electrical design of space systems, at a level which is sufficiently advanced to fit them for carrying out such activities in a real spacecraft design context.

 Learning and teaching methods include the following.


3 hour lecture/tutorial per week – 11 weeks (33 hours)
Guided study of example problems/ past examinations – 20 hours
Coursework – Spacecraft System Design Exercise and Report – 30 hours
Independent study – 67 hours.

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

Reading list for SPACE SYSTEMS DESIGN : http://aspire.surrey.ac.uk/modules/engm273

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Aerospace Engineering MEng 1 Optional A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2018/9 academic year.