MEDICINAL CHEMISTRY - 2020/1

Module code: CHE3058

Module Overview

The module provides well-rounded knowledge and understanding of medicinal chemistry. Through its employment of example drug discovery projects from the research areas of viruses, antibiotics, diabetes, adrenergic receptors, cancer, including nuclear medicine, nanotherapeutics and inorganic medicinal chemistry, it provides students with an appreciation of design and discovery strategies which should allow them to critically evaluate new medicinal chemistry projects as well as suggest new research directions and ideas for improvements.

Module provider

Chemistry

Module Leader

WHELLIGAN Daniel (Chemistry)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

JACs code:

Module cap (Maximum number of students): N/A

Module Availability

Semester 2

Prerequisites / Co-requisites

None

Module content

Indicative module content

Target validation using genetic engineering molecular biology tools.
An introduction to X-ray crystallography and structure based design.
Advanced binding interactions: ΔG, binding role of functional groups and amino acids, the hydrophobic effect.
Viruses and antiviral drugs. Vaccines and antiviral drugs. DNA chain terminators. Enzymes: kinases, peptidases, reversible inhibitors.
Adrenergic receptors: GPCRs, agonists, antagonists, partial agonists, affinity, efficacy, potency. Associated drugs, their mechanisms of action and discovery.
Antibiotics, their discovery. Natural and semisynthetic β–lactams (penicillins and cephalosporins), their mechanism of action. Other antibiotics, the problem of drug resistance (MRSA etc).
Diabetes, mechanisms of action of insulin and drugs. Discovery of new therapeutics. Kinase-linked receptors, ligand gated ion-channel receptors, signal transduction.
Cancer and chemotherapy. Nucleic acids as drug targets. The design of modern targeted therapeutics.
Metal ions and chelating agents in therapy. Ligand design, choice of metal ion and targeting strategies.
Radioisotopes for biological imaging and therapy. Ligand design and targeting strategies.
Radioisotope production, radioloabelling and radioimmunoassay
Nanotherapeutics
Process chemistry, scale-up.
The pharmaceutical industry. Generic drugs. Ethical aspects. Clinical trials. Patents

Assessment pattern

Assessment type Unit of assessment Weighting
Examination Examination 1.5 hr 80
Coursework Coursework 20

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate:
• the ability to research, understand and critically evaluate drug discovery programmes reported in the literature, against a target not met in lectures, by applying knowledge gained in the module;

Thus, the summative assessment for this module consists of:
• coursework incorporating a review of medicinal chemistry programmes on a given target
• examination (1.5 h)

Formative assessment
Small problem-solving tasks are included in some lectures. During the task, the lecturer moves amongst the groups commenting and guiding the students’ starting points and answering strategies. Common difficulties are highlighted to the whole class and the final solution is given on the board/visualiser.

Feedback
Feedback to the written review consists of annotations on the returned document and a breakdown of marks into specific headings along with written general feedback giving justifications for the marks and suggestions for improvement.

Module aims

  • give students an advanced understanding of how therapeutics work and are designed, discovered and developed
  • provide students with a conceptual understanding of drug discovery, for several disease classes, through medicinal chemistry examples

Learning outcomes

Attributes Developed Ref
001 Understand the targeting of biological pathways with drugs to treat several major disease classes CK
002 Review and critically evaluate material describing the mode of action, discovery and development of known drugs CPT
003 Apply medicinal chemistry methods for the determination of structure-activity relationships and improvement of drug pharmacodynamics and pharmacokinetics CKP
004 Understand and critically evaluate late-stage and modern drug development strategies including process chemistry and the design of nanotherapeutics CK
005 Conceptually rationalise the role of metal complexes in diagnostics and therapy and be able to solve problems related to their use CKP

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 119

Lecture Hours: 30

Tutorial Hours: 1

Methods of Teaching / Learning

The learning and teaching strategy is designed to:
• build on students’ knowledge of the drug discovery process, methods and characteristics of drugs by providing them with a fuller understanding of considerations during their design through the use of case studies in several specific areas.
• provide students with an ability to understand new drug discovery programmes, critically evaluate them and suggest future work or improvements.

The learning and teaching methods include:
• formal lectures which contain occasional group problem-solving tasks.
• coursework: a written critical review of published medicinal chemistry programmes for a given biomolecular target, not discussed in lectures, followed by suggested future directions.
• Revision tutorial (1 h)
• Written exam (1.5 h)

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

Reading list for MEDICINAL CHEMISTRY : http://aspire.surrey.ac.uk/modules/che3058

Other information

None.

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.