DATA ANALYTICS - 2022/3
Module code: MANM301
Module Overview
Data Analytics focuses on extracting insights from data. This module introduces the science of examining raw data in order to support businesses and organisations in their decision making. Conveniently, data is structured and stored in relational-databases. In this case, information can be extracted using the Structured Query Language. Often data is unstructured data and additional preparation is required. Methods – including machine learning techniques – are introduced to discover patterns, which can provide businesses with actionable data insights. This module is the foundation for further investigations and a cornerstone of the business analytics programme.
Module provider
Surrey Business School
Module Leader
GROVER Vikas (SBS)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 101
Lecture Hours: 18
Laboratory Hours: 18
Guided Learning: 2
Captured Content: 11
Module Availability
Semester 2
Prerequisites / Co-requisites
None
Module content
The module introduces knowledge, techniques, and tools relevant to the area of data analytics. Please find below an indicative set of topics:
- Structure data – databases and SQL;
- Business Intelligence tools;
- Data Science Language R;
- Knowledge Discovery in databases;
- Unstructured data;
- Statistical Learning and Machine Learning;
- Artificial Intelligence.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COURSEWORK A | 50 |
Coursework | COURSEWORK B | 50 |
Alternative Assessment
Not applicable
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate that they:
- Value Data Analytics for decision-making;
- Can gain actionable business insights from data;
- Demonstrate abilities of presenting solutions in a business context.
The learning and teaching methods include:
- Synthesising theories of relevant data analytics areas;
- Hands-on-approach by evaluating several software tools relevant to data analytics;
- Demonstrating evidence of background reading and research of the academic and practitioner literature relevant to data analytics.
The summative assessment for this module consists of two pieces of coursework.
Formative assessment will be provided during computer laboratory or feedback sessions.
Module aims
- Explore data analytics tools to extract knowledge from datasets.
- Analyse, manipulate, and visualise data using state-of-the-art techniques.
- Explore data mining techniques to extract knowledge from datasets.
Learning outcomes
Attributes Developed | ||
001 | Demonstrate the knowledge discovery process; | KP |
002 | Analyse and visualise data using a methodical analytical approach; | KP |
003 | Familiarity to be able to apply important data mining algorithms and techniques; | CPT |
004 | Apply state-of-the-art methods and tools to build classification and predictive models; | CPT |
005 | Demonstrate the ability to communicate and provide resulting information to the management for decision making. | KCPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The teaching and learning strategy is designed to: cultivate an understanding of the data analytics process with the view of providing actionable data insights to businesses.
This module is delivered as a programme of lectures and lab classes. Web-based learning support and electronic resources will be provided.
The learning and teaching methods include lectures and computer laboratory sessions.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: MANM301
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.