WASTEWATER TREATMENT - 2023/4
Module code: ENGM304
Module Overview
Wastewater quality and treatment have major implications for public and environmental health and the urban water cycle. In this module we will explore this through a broad ranging overview of elements of wastewater treatment and sanitation systems, including the design approaches, sewerage systems and sustainable urban drainage system (SuDs). Major wastewater (sewage) treatment processes will be covered in detail, aligning the theoretical knowledge in ENGM055 Applied Chemistry and Microbiology to practical process design, with inputs from both academics and professionals working in the sector. Approaches to developing world sanitation and wastewater treatment processes will also be covered in the module, which provide in-depth technical knowledge related to topic in ENGM289 Global Challenges in Water and Health. On successful completion of the module, the students are able to show originality in the application of knowledge of sustainable sewerage systems and wastewater treatment to specific situations.
Module provider
Sustainability, Civil & Env Engineering
Module Leader
GUO Bing (Sust & CEE)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 107
Seminar Hours: 8
Tutorial Hours: 14
Guided Learning: 7
Captured Content: 14
Module Availability
Semester 1
Prerequisites / Co-requisites
ENGM055 APPLIED CHEMISTRY AND MICROBIOLOGY
Module content
Indicative content includes:
- Rationale behind wastewater treatment- Public and Environmental health, sanitation and European water framework directives (WFD).
- Wastewater collection and conveyance- sewerage system management and design principles; sustainable urban drainage systems (SuDs).
- Wastewater quality and the urban water cycle.
- Biological wastewater treatment and kinetics of wastewater treatment.
- Wastewater treatment unit processes:
- Activated sludge process (ASP); fixed film wastewater treatment systems (Percolating filters and RBCs).
- Advanced wastewater treatment and reuse- membrane bioreactors (MBRs).
- Waste stabilisation ponds.
- Wastewater treatment process simulation.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COURSEWORK 1 | 15 |
Coursework | COURSEWORK 2 | 15 |
Examination Online | EXAMINATION (4 HOURS ONLINE OPEN BOOK) | 70 |
Alternative Assessment
N/A
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate:
- Proposing appropriate wastewater treatment and drainage schemes and evaluation of industrial and professional practices on wastewater treatment process design and plant operation and management (learning outcomes 1, 2, 3, 4, 5 and 6). This is assessed through the design coursework.
- Analysis of the design principles and evaluation of the unit processes in wastewater collection and treatment (learning outcomes 2, 3, 4 and 5) . This is assessed through both coursework and examination.
- Analysis and comprehensive understanding of wastewater collection and treatment issues, both in industrialised and developing world, to evaluate the treatment process selection and management strategies (learning outcomes 1, 4, 5 and 6). This is assessed through both coursework and examination.
- Ability to synthesize and critically assess the need for wastewater treatment for the protection of natural water bodies and public health (learning outcomes 1 and 4) . This is assessed through examination.
Thus, the summative assessment for this module consists of:
- Coursework on
- Wastewater treatment process design, and
- Sewerage and sustainable urban drainage [Learning outcomes assessed 1, 2, 3, 4, 5, 6]
- Examination [Learning outcomes assessed 1, 2, 3, 4]
Formative assessment Formative assessment will be through a range of exercises provided in the lecture notes and discussed in the tutorial sessions. Feedback Students will receive written feedback on the coursework, and verbal feedback will be provided in the classroom.
Module aims
- Develop a systematic understanding and critical awareness of health and environmental issues associated with
wastewater.
- Develop a systematic understanding and critical awareness of key factors associated with sanitation and wastewater
treatment - Describe the key components of wastewater treatment systems: including preliminary, primary, secondary and tertiary
treatment unit processes. - Develop a comprehensive understanding of wastewater treatment process design principles, and ability of carrying out
design procedures. - Develop an understanding of aspects of regulations and legislation associated with wastewater treatment.
Develop the ability to evaluate conventional and advanced systems for wastewater treatment and reuse.- Develop a systematic understanding and critical awareness of the principles of sewerage design, operation and
maintenance, including sustainable urban drainage system concepts.
Learning outcomes
Attributes Developed | ||
001 | Be able to demonstrate a systematic understanding and critical awareness of aspects of wastewater quality and treatment including their implications for public and environmental health and the urban water cycle. | CKT |
002 | Analyse the functions of unit processes associated with a number of wastewater treatment systems. | CKT |
003 | Carry out, critically evaluate and present the process design of conventional and advanced wastewater treatment processes. | CKT |
004 | Demonstrate a comprehensive understanding of aspects of wastewater treatment regulation and law. | CKT |
005 | Propose appropriate sewerage and drainage schemes for storm water and wastewater management, taking into account the principles of sustainable urban drainage systems (SuDs). | CKT |
006 | Prepare technical reports and documents demonstrating written communication, critical thinking, presentation of data and information, and concept design for wastewater treatment plants. | CKPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
This module provides theoretical and practical knowledge that is required in the wastewater management industry and relevant public agencies. Students will develop applied skills in sustainable sewerage and drainage (aligned with Sustainability), biological wastewater treatment, primary and secondary treatment, advanced wastewater treatment reuse, sludge treatment, unit operations and design in municipal wastewater treatment, which are commonly required for professional contribution in the field of wastewater treatment, and protection of natural water bodies and public health.
The module uses a mix of captured content, seminars by academics and industry experts, and practical exercises in tutorials.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENGM304
Other information
The Department of Civil and Environmental Engineering is committed to developing graduates with strengths in Employability, Digital Capabilities, Global and Cultural Capabilities, Sustainability and Resourcefulness and Resilience, in line with the Surrey Curriculum Framework. This module is designed to allow students to develop knowledge, skills and capabilities in the following areas: Employability: Students will be supported to develop a unique set of individual, interpersonal and professional skills in water/wastewater engineering. These skills will equip students to be employment ready. The module will bring in speakers from industry to give talks on real-life process design, and career development. Sustainability: Students will recognise the social-environmental impact of water/wastewater engineering technologies and policies. Real-life case studies related to sustainability issues such as renewable energy, greenhouse gas emission and climate change will be discussed, and external speakers will give talks about sustainability in the water industry.
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Water and Environmental Engineering MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Advanced Geotechnical Engineering MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Civil Engineering MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Structural Engineering MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Civil Engineering MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Infrastructure Engineering and Management MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.