EARTHQUAKE ENGINEERING - 2025/6
Module code: ENGM054
Module Overview
Earthquake engineering module aims to cover the fundamental concepts associated with the way earthquakes are generated, principles behind seismic hazard analysis, methods to analyse behaviour of structures and foundations under seismic loading, behaviour of ground during earthquakes (ground response analysis and liquefaction). It also covers earthquake resistant design principles.
Module provider
Sustainability, Civil & Env Engineering
Module Leader
BHATTACHARYA Suby (Sust & CEE)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 108
Lecture Hours: 10
Seminar Hours: 6
Tutorial Hours: 5
Laboratory Hours: 1
Captured Content: 20
Module Availability
Semester 2
Prerequisites / Co-requisites
None
Module content
• Earthquakes: A geophysical and geological perspective
Basics of earthquakes, measurement of earthquakes, seismic hazard analysis, estimation of fault movements for design purposes.
• Earthquake motion
Input motion characteristics and construction of synthetic/artificial input motion
• Behaviour of structures under seismic loading including design
Free and forced vibrations of SDOF systems, generalised SDOF systems, Rayleigh’s method, time domain numerical methods and Newmarks’s method, earthquake response spectra, behaviour of MDOF systems and modal analysis, Seismic design of structures according to EC8, member and connection behaviour.
• Behaviour of ground under seismic loading including foundation design
Liquefaction and site response analysis, Advanced soil testing for dynamic design, use of Cyclic Triaxial and dynamic simple shear apparatus to study liquefaction, Liquefaction evaluation and mitigation techniques, Soil Structure Interaction issues in seismic design, design of foundations (shallow and deep foundations) in seismic areas, Winkler Spring approach for foundation design, detailed case studies of building and bridge failures during earthquakes.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COURSEWORK 1 | 20 |
Coursework | COURSEWORK 2 | 20 |
Examination | EXAM (2 HOUR) | 60 |
Alternative Assessment
N\A
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate
- knowledge and understanding of the basic principles of seismic design (LO’s 3, 5) is through a open book examination.
- solving open ended problem such as assessing the seismic hazards and evaluate the strategies for mitigation and re-engineering through acquired knowledge and understanding together with the necessary analytical skills to carry out design code specific calculations. This is done through course work (LO’s 1,2,3,4,5).
Thus, the summative assessment for this module consists of:
- Coursework -1: This will focus on Earthquake Geotechnical Engineering with emphasis on Ground Response, Liquefaction and foundation analysis/design [Learning outcomes assessed 1, 2,3,4,5]
- Coursework -2: This will focus on the structural and dynamic analysis [Learning outcomes assessed 1, 2,3,4,5]
- Examination [Learning outcomes assessed 3, 5] ·
Formative assessment and feedback
Formative assessment will be through a range of self assessment exercises and quizzes held in the class. These exercises will provide automatic feedback where necessary. Feedback will also be given in tutorial sessions.
Students will receive written feedback on their coursework.
Module aims
- provide an appreciation of the causes of earthquakes and the hazards associated with it to the built environment.
- provide an understanding of the principles of seismic design and methods of analysis
- provide the ability to carry out calculations necessary for seismic design
- provide the ability to recognise the uncertainties in seismic analysis and design
Learning outcomes
Attributes Developed | ||
001 | Explain the causes of earthquake and describe the nature of seismic loading | KT |
002 | Identify and assess the hazards that can be caused by an earthquake to a built environment | KCPT |
003 | Evaluate the dynamic behaviour of structures and ground analytically and also by using software | KCPT |
004 | Review the various methods to mitigate seismic hazards, for example liquefaction and ground modifications at soft soil sites. | KCPT |
005 | carry out design using appropriate codes of practice | KCPT |
006 | Technical report writing | T |
007 | Oral & written communication | T |
008 | Graphical presentation of data | T |
009 | Sketching | T |
010 | 3D spatial awareness | T |
011 | Critical thinking | T |
012 | Observation | T |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to:
- provide a specialist knowledge of structural and soil dynamics and earthquake engineering. There will be application of specialized software and development of codes and will enhance digital capabilities.
- deliver principally by lectures, captured content but also includes laboratory demonstration of advanced soil testing and learning through course work. The course work involves carrying out a structure and foundation design based on the fundamental principles and also by using software.
- Back analysis of case records of building/bridge/structure performance will enhance the use of real data and analysis
The learning and teaching methods include lectures, tutorials, seminars, a lab class and captured content.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENGM054
Other information
Surrey's Curriculum Framework is committed to developing graduates with strengths in Employability, Digital Capabilities, Global and Cultural Capabilities, Sustainability and Resourcefulness and Resilience. This module is designed to allow students to develop knowledge, skills and capabilities in the following areas:
Digital capabilities: Through the use of software and Spreadsheets in analyzing problems.
Employability: Earthquake Engineering is a specialized subject and the skills are required to design infrastructures in seismic zones. These knowledge will enhance employability.
Global Capabilities: Earthquake Engineering knowledge will enhance capabilities to work in seismic countries.
Sustainability: Earthquake Engineering design is cost-benefit-risk optimization and balances the earthquake risk (low probability) with resources to achieve the intended performance. This is a perfect example of sustainability.
Resourcefulness and Resilience: Resilience is central core of earthquake engineering.
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Advanced Geotechnical Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Structural Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Civil Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Infrastructure Engineering and Management MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Bridge Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2025/6 academic year.