WASTEWATER TREATMENT - 2025/6

Module code: ENGM304

Module Overview

Wastewater quality and treatment have major implications for public and environmental health and the urban water cycle. In this module we will explore this through a broad ranging overview of elements of wastewater treatment and sanitation systems, including the design approaches, sewerage systems and sustainable urban drainage system (SuDs). Major wastewater (sewage) treatment processes will be covered in detail, from the theoretical knowledge of applied microbiology to practical process design, with inputs from both academics and professionals working in the sector. Approaches to developing world sanitation and wastewater treatment processes will also be covered in the module, which provide in-depth technical knowledge related to topic in ENGM289 Global Challenges in Water and Health. On successful completion of the module, the students are able to show originality in the application of knowledge of sustainable sewerage systems and wastewater treatment to specific situations.

Module provider

Sustainability, Civil & Env Engineering

Module Leader

GUO Bing (Sust & CEE)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 107

Seminar Hours: 8

Tutorial Hours: 14

Guided Learning: 7

Captured Content: 14

Module Availability

Semester 1

Prerequisites / Co-requisites

None.

Module content

Indicative content includes:


  • Rationale behind wastewater treatment- Public and Environmental health, sanitation and European water framework directives (WFD).

  • Wastewater collection and conveyance- sewerage system management and design principles; sustainable urban drainage systems (SuDs).

  • Wastewater quality and the urban water cycle.

  • Biological wastewater treatment and kinetics of wastewater treatment.

  • Wastewater treatment unit processes:

  • Activated sludge process (ASP); fixed film wastewater treatment systems (Percolating filters and RBCs).

  • Introduction to microbiology, microbial growth and metabolism

  • Waste stabilisation ponds.

  • Wastewater treatment process simulation.


Assessment pattern

Assessment type Unit of assessment Weighting
Coursework COURSEWORK 1 15
Coursework COURSEWORK 2 15
Examination EXAM (2 HOUR) 70

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate: 


  • Proposing appropriate wastewater treatment and drainage schemes and evaluation of industrial and professional practices on wastewater treatment process design and plant operation and management (learning outcomes 1, 2, 3, 4, 5 and 6). This is assessed through the design coursework.

  • Analysis of the design principles and evaluation of the unit processes in wastewater collection and treatment (learning outcomes 2, 3, 4 and 5) . This is assessed through both coursework and examination.

  • Analysis and comprehensive understanding of wastewater collection and treatment issues, both in industrialised and developing world, to evaluate the treatment process selection and management strategies (learning outcomes 1, 4, 5 and 6). This is assessed through both coursework and examination.

  • Ability to synthesize and critically assess the need for wastewater treatment for the protection of natural water bodies and public health (learning outcomes 1 and 4) . This is assessed through examination.



Thus, the summative assessment for this module consists of:


  • Coursework on

    • Wastewater treatment process design, and

    • Sewerage and sustainable urban drainage [Learning outcomes assessed 1, 2, 3, 4, 5, 6]



  • Examination [Learning outcomes assessed 1, 2, 3, 4] 



Formative assessment Formative assessment will be through a range of exercises provided in the lecture notes and discussed in the tutorial sessions. Feedback Students will receive written feedback on the coursework, and verbal feedback will be provided in the classroom.

Module aims

  • Develop a systematic understanding and critical awareness of health and environmental issues associated with
    wastewater.
  • Develop a systematic understanding and critical awareness of key factors associated with sanitation and wastewater
    treatment
  • Describe the key components of wastewater treatment systems: including preliminary, primary, secondary and tertiary
    treatment unit processes.
  • Develop a comprehensive understanding of wastewater treatment process design principles, and ability of carrying out
    design procedures.
  • Develop an understanding of aspects of regulations and legislation associated with wastewater treatment.

  • Develop the ability to evaluate conventional and advanced systems for wastewater treatment and reuse.
  • Develop a systematic understanding and critical awareness of the principles of sewerage design, operation and
    maintenance, including sustainable urban drainage system concepts.
  • Introduce principles of microbiology, microbial growth and metabolism

Learning outcomes

Attributes Developed
001 Be able to demonstrate a systematic understanding and critical awareness of aspects of wastewater quality and treatment including their implications for public and environmental health and the urban water cycle. KCPT
002 Analyse the functions of unit processes associated with a number of wastewater treatment systems. KCPT
003 Carry out, critically evaluate and present the process design of conventional and advanced wastewater treatment processes. KCPT
004 Demonstrate a comprehensive understanding of aspects of wastewater treatment regulation and law. KCPT
005 Propose appropriate sewerage and drainage schemes for storm water and wastewater management, taking into account the principles of sustainable urban drainage systems (SuDs). KCPT
006 Prepare technical reports and documents demonstrating written communication, critical thinking, presentation of data and information, and concept design for wastewater treatment plants. KCPT
007 Critically assess the importance of microbiological processes during the treatment of wastewater. KCPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

This module provides theoretical and practical knowledge that is required in the wastewater management industry and relevant public agencies. Students will develop applied skills in sustainable sewerage and drainage (aligned with Sustainability), biological wastewater treatment, primary and secondary treatment, advanced wastewater treatment reuse, sludge treatment, unit operations and design in municipal wastewater treatment, which are commonly required for professional contribution in the field of wastewater treatment, and protection of natural water bodies and public health.

The module uses a mix of captured content, seminars by academics and industry experts, and practical exercises in tutorials. 

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENGM304

Other information

The Department of Civil and Environmental Engineering is committed to developing graduates with strengths in Employability, Digital Capabilities, Global and Cultural Capabilities, Sustainability and Resourcefulness and Resilience, in line with the Surrey Curriculum Framework. This module is designed to allow students to develop knowledge, skills and capabilities in the following areas: Employability: Students will be supported to develop a unique set of individual, interpersonal and professional skills in water/wastewater engineering. These skills will equip students to be employment ready. The module will bring in speakers from industry to give talks on real-life process design, and career development. Sustainability: Students will recognise the social-environmental impact of water/wastewater engineering technologies and policies. Real-life case studies related to sustainability issues such as renewable energy, greenhouse gas emission and climate change will be discussed, and external speakers will give talks about sustainability in the water industry.

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2025/6 academic year.