BIOORGANIC CHEMISTRY AND DRUG DISCOVERY - 2019/0

Module code: CHE2037

Module Overview

This module builds on general organic chemistry knowledge in the context of biomolecules including proteins, carbohydrates, nucleic acids and natural products from common biosynthetic pathways. It covers the biomolecules’ natural and synthetic chemistry and uses this foundation to support a basic understanding of drug action and the drug discovery process.

Module provider

Chemistry

Module Leader

WHELLIGAN Daniel (Chemistry)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 5

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 116

Lecture Hours: 32

Tutorial Hours: 2

Module Availability

Semester 2

Prerequisites / Co-requisites

None

Module content

Indicative content includes:


  • Drug discovery: historical perspective

  • Basic model of drug mechanism, medicinal chemistry introduction, modern drug discovery process

  • Drug-target binding interactions

  • Drug targets: receptors, enzymes, other proteins, nucleic acids. Target identification. Target validation.

  •  Amino acids, peptides, proteins: 1°, 2°, 3°, 4° structure, peptide synthesis, gel electrophoresis, Western blotting, peptide/protein analysis.

  • Lead finding: bioassay introduction, natural products, HTS, virtual screening, parallel chemistry, combinatorial chemistry.

  • SAR and structure based design. Pharmacophore, introduction to computer aided drug design. Selectivity, toxicity.

  • The cell membrane: lipids, fatty acids, membrane proteins, crossing the cell membrane, drugs which target the cell membrane

  • Pharmacokinetics: ADME: bioavailability, introduction to absorption, log P, distribution, metabolism, excretion, Lipinski’s ‘rules’, drug administration

  • Getting a drug to market: Toxicology testing, clinical trials, regulatory affairs.

  • Carbohydrates: mono, oligo, polysaccharides, carbohydrate (sugar) chemistry/synthesis.

  • The acetate pathway: Fatty acids, prostagalandins, anthraquinones, aflatoxins, cannabinoids, tetracyclines, macrolides, polyenes and polyethers of medicinal importance

  • The shikimate pathway: Lignans, coumarins and flavonoids of medicinal importance. Phytoestrogens and vitamin E

  • The mevalonate pathway: the terpenoids, classes, nomenclature, steroid hormones and other medicinally important terpenoids

  • The chemistry of the alkaloids: structures, biosynthesis, medicinally important examples, recreational drugs and drug abuse

  • Traditional medicine systems. Ethnopharmacology

  • Nucleic acids: DNA, RNA, replication, transcription, translation. Drugs that target DNA/RNA.


Assessment pattern

Assessment type Unit of assessment Weighting
Coursework Coursework 20
Examination Examination: 1.5 hours 80

Alternative Assessment

None

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate:


  • application of knowledge and skills from lectures to answer problems or write essays on topics related to biomolecule identification, biosynthesis and medicinal uses

  • use of knowledge from the course and, where necessary, further background reading to comprehend a drug discovery paper from the peer-reviewed literature and answer a set of questions on it



Thus, the summative assessment for this module consists of:


  • one piece of coursework consisting of either an essay and/or question sets based on lecture material and the literature.

  • examination (closed book)



Formative assessment

Most lectures contain small problem-solving tasks which are addressed in groups of 2-3. During the task, the lecturer moves amongst the groups commenting and guiding the students’ starting points and answering strategies. Common problems are highlighted to the whole class and the final solution is given on the board/visualiser.

Feedback

Feedback to the coursework will consist of comments on individual students’ work as well as general feedback document covering common misconceptions and mistakes.

Module aims

  • Develop an understanding of biomolecules and natural products
  • Describe how drugs interact with biomolecules and gain a critical understanding of the drug discovery, design and development process

Learning outcomes

Attributes Developed
001 Understand the history of drug discovery K
002 Describe modern methods of drug discovery, design and development KC
003 Have a keen awareness of the pharmacodynamic and pharmacokinetic aspects of molecules that are considered throughout the drug discovery process and be able to apply this to new compounds KC
004 Explain the chemistry of lipids, amino acids, peptides and proteins, carbohydrates, nucleic acids and alkaloids and relate it to drug action KC
005 Have knowledge of the important classes of natural products and their biosynthesis KC

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

introduce chemists to drug discovery and provide them with foundational knowledge and understanding of biomolecules for understanding more advanced drug discovery concepts and biochemistry in the future.

The learning and teaching methods include:


  • lectures which incorporate small-group problem-solving (32 h)

  • coursework which requires application of course material and further research into topics or questions related to course content

  • revision tutorials which address students’ issues which arise during revision (2 h)

  • written examination 1.5 h


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: CHE2037

Other information

None

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Chemistry with Forensic Investigation BSc (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Chemistry BSc (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Medicinal Chemistry BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemistry MChem 2 Optional A weighted aggregate mark of 40% is required to pass the module
Chemistry with Forensic Investigation MChem 2 Optional A weighted aggregate mark of 40% is required to pass the module
Medicinal Chemistry MChem 2 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2019/0 academic year.