Radiation and Environmental Protection MSc - 2019/0

Awarding body

University of Surrey

Teaching institute

University of Surrey

Framework

FHEQ Level 7

Final award and programme/pathway title

MSc Radiation and Environmental Protection

Subsidiary award(s)

Award Title
PGDip Radiation and Environmental Protection
PGCert Radiation and Environmental Protection

Modes of study

Route code Credits and ECTS Credits
Full-time PCK61004 180 credits and 90 ECTS credits
Part-time PCK61003 180 credits and 90 ECTS credits

QAA Subject benchmark statement (if applicable)

Other internal and / or external reference points

N/A

Faculty and Department / School

Faculty of Engineering and Physical Sciences - Physics

Programme Leader

PODOLYAK Zsolt (Physics)

Date of production/revision of spec

25/11/2021

Educational aims of the programme

  • The programme integrates the acquisition of core scientific knowledge with the development of key practical skills with a focus on professional career development within medical physics and radiation detection, and related industries.
  • The principle educational aims and outcomes of learning are to provide participants with advanced knowledge, practical skills and understanding applied to medical physics, radiation detection instrumentation, radiation and environmental practice in an industrial or medical context
  • This is achieved by the development of the participants' understanding of the underlying science and technology and by the participants gaining an understanding of the legal basis, practical implementation and organisational basis of medical physics and radiation measurement.

Programme learning outcomes

Attributes Developed Awards Ref.
A systematic understanding of Radiation and Environmental Protection in an academic and professional context together with a critical awareness of current problems and / or new insights K PGCert
A comprehensive understanding of techniques applicable to their own research project in Radiation and / or Environmental Protection K MSc
Originality in the application of knowledge, together with a practical understanding of radiation-based, experimental research projects K MSc
An ability to evaluate and objectively interpret experimental data pertaining to radiation detection K MSc
Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context K MSc
A systematic understanding of Radiation Science in an academic and professional context together with a critical awareness of current problems and/or new insights K PGDip
Originality in the application of knowledge, together with a practical understanding of radiation-based, experiments K PGDip
An ability to evaluate and objectively interpret experimental data pertaining to radiation detection K PGDip
Familiarity with generic issues in management and safety and their application to Radiation and Environmental Protection in a professional context K PGDip
A systematic understanding of Radiation Physics in an academic and professional context together with a critical awareness of current problems and / or new insights K PGCert
A practical understanding of radiation-based experiment K PGCert
An ability to evaluate and objectively interpret experimental data pertaining to radiation detection K PGCert
Familiarity with generic issues in management and safety and their application to Radiation Protection K PGCert
The ability to plan and execute under supervision, an experiment or investigation and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context C MSc
The ability to evaluate critically current research and advanced scholarship in the discipline of Radiation protection C MSc
The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data, and communicate their conclusions clearly to specialist and non-specialist audiences C MSc
The ability to plan and execute under supervision, an experiment and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and / or with published data. Graduates should be able to evaluate the significance of their results in this context C PGDip
The ability to deal with complex issues both systematically and creatively, make sound judgements in the absence of complete data and communicate their conclusions clearly to specialist and non-specialist audiences C PGDip
The ability to plan and execute under supervision, an experiment and to analyse critically the results and draw valid conclusions from them. Students should be able to evaluate the level of uncertainty in their results, understand the significance of uncertainty analysis and be able to compare these results with expected outcomes, theoretical predictions and/or with published data. Graduates should be able to evaluate the significance of their results in this context C PGCert
The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively P MSc
The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources P MSc
Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes P MSc
The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively P PGDip
The ability to manage their own learning and to make use of appropriate texts, research articles and other primary sources P PGDip
Responsibility for personal and professional development. Ability to use external mentors for personal / professional purposes P PGDip
The ability to communicate complex scientific ideas, the conclusions of an experiment, investigation or project concisely, accurately and informatively P PGCert
Identify and resolve problems arising from lectures and experimental work T
Make effective use of resources and interaction with others to enhance and motivate self-study T
Make use of sources of material for development of learning and research such as journals, books and the internet T
Take responsibility for personal and professional development T

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Programme structure

Full-time

This Master's Degree programme is studied full-time over one academic year, consisting of 180 credits at FHEQ level 7. All modules are semester based and worth 15 credits with the exception of project, practice based and dissertation modules.
Possible exit awards include:
- Postgraduate Diploma (120 credits)
- Postgraduate Certificate (60 credits)

Part-time

This Master's Degree programme is studied part-time over two academic years, consisting of 180 credits at FHEQ level 7. All modules are semester based and worth 15 credits with the exception of project, practice based and dissertation modules.
Possible exit awards include:
- Postgraduate Diploma (120 credits)
- Postgraduate Certificate (60 credits)

Programme Adjustments (if applicable)

N/A

Modules

Year 1 (full-time) - FHEQ Level 7

Module Selection for Year 1 (full-time) - FHEQ Level 7

PGCert Radiation Physics: 60 taught module credits (PHYM032, 015 and 036 Compulsory) at FHEQ Level 7
PgDip Radiation and Environmental Protection (PHYM032, 015 and 036 Compulsory) 120 taught module credits at FHEQ Level 7
MSc (Radiation and Environmental Protection): 180 credits at FHEQ Level 7 and completed the programme of study

Year 1 (part-time) - FHEQ Level 7

Module Selection for Year 1 (part-time) - FHEQ Level 7

PGCert Radiation Physics: 60 taught module credits (PHYM032, 015 and 036 Compulsory) at FHEQ Level 7
PgDip Radiation and Environmental Protection (PHYM032, 015 and 036 Compulsory) 120 taught module credits at FHEQ Level 7
MSc (Radiation and Environmental Protection): 180 credits at FHEQ Level 7 and completed the programme of study

Year 2 (part-time) - FHEQ Level 7

Module Selection for Year 2 (part-time) - FHEQ Level 7

PGCert Radiation Physics: 60 taught module credits (PHYM032, 015 and 036 Compulsory) at FHEQ Level 7
PgDip Radiation and Environmental Protection (PHYM032, 015 and 036 Compulsory) 120 taught module credits at FHEQ Level 7
MSc (Radiation and Environmental Protection): 180 credits at FHEQ Level 7 and completed the programme of study

Opportunities for placements / work related learning / collaborative activity

Associate Tutor(s) / Guest Speakers / Visiting Academics N
Professional Training Year (PTY) N
Placement(s) (study or work that are not part of PTY) N
Clinical Placement(s) (that are not part of the PTY scheme) N
Study exchange (Level 5) N
Dual degree N

Quality assurance

The Regulations and Codes of Practice for taught programmes can be found at:

https://www.surrey.ac.uk/quality-enhancement-standards

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2019/0 academic year.