COMPUTER MODELLING IN CHEMISTRY - 2020/1
Module code: CHE2043
Module Overview
To provide introductory practical experience in modern computer graphics and modelling techniques for the chemical industry and research.
Module provider
Chemistry
Module Leader
HOWLIN Brendan (Chemistry)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 5
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 117
Practical/Performance Hours: 33
Module Availability
Semester 2
Prerequisites / Co-requisites
None
Module content
Indicative content includes:
• introduction to molecular modelling and computational chemistry.
• simple theory of molecular mechanics and molecular orbital calculations. Energy expressions and minimisation techniques.
• small Molecule Modelling.
• practical applications using MOE and GAUSSIAN on PCs with GAUSSVIEW.
• conformations in molecules and conformational analysis.
• using GAUSSIAN to predict and animate IR and NMR spectra of simple molecules
• protein Modelling and Databases
• introduction to protein three-dimensional structure covering amino acids, codes for amino acids, sequence analysis, primary, secondary, tertiary and quaternary structure.
• the Protein Database for protein X-ray structures and using the Web Browser.
• the use of MOE for visualising structures.
• introduction to the use of MOE databases
• designing QSAR equations using MOE
• practical exercise on Nicotinic inhibitors using MOE
• designing new drugs using QSAR
• Lipinski’s rule of Five
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | Protein Modelling | 50 |
Coursework | QSAR | 50 |
Alternative Assessment
No alternative
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate practical skills in computer modelling
Thus, the summative assessment for this module consists of:
- Coursework on protein modelling, 50% (meets learning outcomes 1,2)
- Coursework on QSAR, 50% (meets learning outcomes 1, 3)
Formative assessment
Hands on guidance to the coursework will be given.
Feedback
Individual and in class feedback will be given on the progress in modelling.
Module aims
- To examine simple quantum mechanical calculations.
- To gain practical experience in homology modelling of proteins.
- To introduce the concepts behind chemoinformatics.
- To describe the representation of structural and chemical data.
- To introduce the use of 2-dimensional reduction, for specifying chemical structures.
- To study the use of databases to store and retrieve structural and chemical data.
Learning outcomes
Attributes Developed | ||
001 | Be familiar with the wide range of modelling techniques as a precursor to applying these to the Industrial Research Year and beyond (KT) | KT |
002 | Have an in-depth appreciation of how to carry out practical projects using 3-dimensional data in a database and to display it in a variety of ways | CPT |
003 | Have an in-depth understanding of how to carry out QSAR analysis on pharmaceutical compounds. | KPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to:
Give the student both practical and theoretical knowledge of modern molecular modelling
The learning and teaching methods include a hands on workshop approach will be taken to the computational modelling in the computing laboratory (33 hours).
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: CHE2043
Other information
None
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Chemistry with Forensic Investigation BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Chemistry MChem | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Chemistry with Forensic Investigation MChem | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Chemistry BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.