Module code: CHE3063

Module Overview

The module is designed to develop an understanding of specific areas of inorganic chemistry that have not yet been investigated. This includes aspects of organometallic chemistry, symmetry and use of inorganic elements in electrical devices.

Module provider


Module Leader

TURNER SS Dr (Chemistry)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

JACs code:

Module cap (Maximum number of students): N/A

Module Availability

Semester 1

Prerequisites / Co-requisites


Module content

Indicative content includes:

• relationship between organic and inorganic chemistry throgh the isolobal principle. Hapticity. 18 electron rule and deviation from the rule. The MO approach to bonding.

• occurrence, reactivity, preparation and structures of transition metal carbonyls. Modes of coordination. Phosphine ligands and Tolman plots. The effect and evidence for backbonding.

• synthesis and structure of complexes containing alkene and alkyne, allyl and butadiene ligands. Carbene complexes. Metathesis reactions.

• structure, synthesis and bonding in complexes of cyclo-pentadienyl and related cyclic ligands

• metal complexes as homogeneous catalysts. Discussion of processes such as alkene hydrogenation, oxidation, hydroformylation, Tennesee-Eastmen acetic anhydride process, Fischer-Tropsch, Monsanto and Cativa process.

• review of symmetry and character tables. Use and link between symmetry and molecular orbital diagrams, vibrational spectra and electronic spectra. Support through brief overview of the mathematical underpinnings of group theory.

• basics of conductivity theory. Band structures. Silicon-based electronic devices. Doping strategies and p-n junctions. Superconductivity in inorganic materials.

Assessment pattern

Assessment type Unit of assessment Weighting
Examination 1.5 hour examination 80
Coursework Coursework problem set 20

Alternative Assessment


Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate achievement in the defined learning outcomes with specific emphasis on problem solving in organometallic chemistry and aspects of well-established inorganic materials chemistry.

Thus, the summative assessment for this module consists of:

• 1.5 hour examination (80%) addressing LO1-LO5

• Coursework problem set (20%) addressing LO1-LO5

Formative assessment

2 hours of workshops where students can complete specific seen and unseen problems, integrated discussion and questions in lectures to consolidate knowledge, in-class exercises and examples are discussed throughout the module. Feedback Detailed individual feedback is given on coursework problem sets, during workshops and lecture discussions.

Module aims

  • • introduce content from the fundametals to advanced aspects of transition metal organometallic chemistry
  • • illustrate the reactivity of selected organometallic compounds and show how these may be used as a tool for the synthesis of complex molecules
  • • show how symmetry can be used to retionalize bonding and vibrational spectroscopy
  • • to explore modern developments in inorganic materials with a focus on silicon based inorganic conductors.

Learning outcomes

Attributes Developed
001 Discuss and explain theories of metal-ligand bonding in transition metal organometallic compounds CK
002 Review the nature and role of organometallic compounds in the synthesis of important organic compounds CK
003 Apply appropriate critical and analytical in solving problems PT
004 Understand the use of molecular symmetry and the link to bonding models and the interpretation of vibrational spectra CK
005 Discuss the structure and chemical composition of inorganic materials that have appreciable electrical conductivity CK

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 113

Lecture Hours: 35

Tutorial Hours: 2

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

Provide an understanding of the links between inorganic and organic chemistry though the topic of organometallic chemistry and homogeneous catalysis. Encourage learners to apply their knowledge to solve problems in synthesis and structure elucidation. Discuss aspects of inorganic materials chemistry in well-established areas of silicon-based electronics and superconductivity.

The learning and teaching methods include:

• 33 hours lectures

• 2 hours revision classes

• 2 hours problem workshops

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list


Other information


Programmes this module appears in

Programme Semester Classification Qualifying conditions
Chemistry with Forensic Investigation BSc (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Chemistry BSc (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Medicinal Chemistry BSc (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.