ADVANCED ORGANIC SYNTHESIS - 2020/1

Module code: CHEM036

Module Overview

Organic chemistry research is dominated by synthesis and this is very much the underlying concept of this module, although the indispensable mechanistic aspects that underpin synthesis are prominent. There is much emphasis on strategy and critical analysis of work that is at the forefront of the topic and the application of the knowledge to real-world examples.

Module provider

Chemistry

Module Leader

MULHOLLAND Dulcie (Chemistry)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 118

Lecture Hours: 26

Practical/Performance Hours: 6

Module Availability

Semester 1

Prerequisites / Co-requisites

None

Module content

Indicative content includes:

• Revision of organic reactions: Revision of mechanisms

• Retrosynthetic Analysis: Terms, definitions and basic concepts; retrosynthetic analysis: aromatic compounds; retrosynthetic Analysis: alcohols and carbonyl compounds; retrosynthetic analysis: 1,2, 1,3, 1,4 and 1,5 dicarbonyl compounds; -unsaturated and 1,3 dihydroxy compounds; retrosynthetic analysis: carbocyclic and heterocyclic; compounds

• Modern reactions: Polar reactions in synthesis, radical reactions in synthesis, pericyclic reactions in synthesis, asymmetric synthesis – an introduction

• Catalytic reactions in organic chemistry: Concept of catalysis. Mechanistic implications: creating a catalytic cycle. Reactions using metal catalysis; palladium-catalysed cross-coupling reactions: Heck, Sonogashira, Stille and Suzuki reactions; Pauson-Khand reaction. Small organic molecules as catalysts: BaylisHillman reaction; olefin metathesis

• Multicomponent reactions: Solid-phase synthesis and combinatorial chemistry

• Asymmetric Synthesis: enantioselectivity: definitions and overview, chiral induction, chiral reagents and auxiliaries in organic synthesis, chiral catalysts in organic synthesis, the Sharpless asymmetric dihydroxylation reaction

Literature report and presentation (2 x 3 h). Students are given an important synthesis paper and are required to write a short article explaining the underlying chemistry and the strategic aspects; they also present a short lecture on the topic, AND are required to attend and participate in all presentations

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework Coursework comprising: problem-solving sheet 15
Oral exam or presentation Literature report and literature class presentation 15
Examination Examination (2 hours) 70

Alternative Assessment

Normally none, but a presentation to staff may replace the literature class presentation (7.5%) in cases of extenuating circumstances.

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate achievement of learning outcomes:

• Examination and coursework: Application of knowledge to problems in advanced organic chemistry [LOs 1, 2, 3, 5]

• Report and Presentation: Ability to critically analyse the latest discoveries (report and presentation CW) [LOs 4, 6]

 

Thus, the summative assessment for this module consists of:

• Coursework: Problem solving on aspects of the course (15%) [LOs assessed 1, 2, 3, 5]

• Report and presentation: Current advances in Organic Chemistry (15%,) [LOs 4, 6]

• Examination: 50%, closed book [LOs assessed 1, 2, 3, 5]

 

Formative assessment

Formative assessment is in the form of in-class exercises, practice problems, on-line (SurreyLearn) tutorials, worked examples and worked problems.

 

Feedback:

Feedback is provided optionally on the formative practice problems, exercises and tutorials. Coursework is marked and returned with feedback in time for the revision period. Limited formative feedback is provided on request for the report.

Module aims

  • • provide students with the appropriate advanced material in organic chemistry in a way that allows them to solve unfamiliar problems in synthesis, and to apply critical analysis to new and existing knowledge
  • • equip the student to undertake a programme of research in organic chemistry.

Learning outcomes

Attributes Developed
001 Demonstrate a comprehensive understanding of modern advanced organic reactions (including their scope), especially the more abstracts aspects (chirality, combinatorial) K
002 Predict chemo-, regio- and stereo-selectivity in given reactions K
003 Critique and select from several viable synthetic approaches to target compounds KC
004 Discuss with critical analysis and report on literature advances in organic chemistry KCT
005 Show originality in the approach to solving specific problems in synthesis KCPT
006 Review, assess and demonstrate critical thinking, and develop report writing and presentation skills T

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

• give the student not just an advanced knowledge base, but the analytical and problem-solving skills appropriate to independent research in modern organic chemistry.

 

The learning and teaching methods include:

• Lectures (~2-3 per week x 11)

• Problem-solving CW based on the lectures (18 h over 8 weeks)

• Investigative self-study (assessed report and preparation for presentation) (18 h over 8 weeks)

• General self-study

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: CHEM036

Other information

None.

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Medicinal Chemistry MChem 1 Compulsory A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.