Module code: EEE2043

Module Overview

Expected prior learning:  Learning equivalent to Year 1 of EE Programmes.

Module purpose:  Space engineering provides a foundation for human access and utilization of space and has shown growing importance to global economy. The module offers basics of space engineering and mission design. Students will obtain an introduction on mission analysis and design tools, instrumentation and space technologies.


Module provider

Electrical and Electronic Engineering

Module Leader

UNDERWOOD Craig (Elec Elec En)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 5

Module cap (Maximum number of students): 16

Overall student workload

Independent Learning Hours: 83

Lecture Hours: 15

Tutorial Hours: 12

Laboratory Hours: 15

Guided Learning: 10

Captured Content: 15

Module Availability

Semester 2

Prerequisites / Co-requisites


Module content

Indicative content includes the following:

Basic Elements of a Space Mission

Introduction to space missions, fundamentals of spacecraft subsystems, introduction to launch vehicles, mission operations, mission management, space system engineering and architecture.

Space Mission Design Fundamentals

Introduction to space system engineering process, introduction to space mission objectives and requirement definition, derivation of space mission design budgets (mass and power), system design constraints.

Environmental Impacts on Design

Brief assessment of pre-launch, launch and space environments and effects on space mission design. Understanding the physics and design impact of vibration, loading, forces, accelerations, EMC, vacuum, thermal and radiation disturbances on spacecraft design.

Overview of Spacecraft Payload and Subsystems

Fundamentals of spacecraft definition, design aspects, physics and basic work principles of payload and major subsystems including power, command and data handling, attitude and orbit control, structures and mechanisms, propulsion, thermal and communication. Introduction to spacecraft dynamics, adaptation of Newton’s laws for launch vehicles, introduction to launch vehicle mechanics (forces, torques, stress, acceleration, vibrations) and electronics design for key spacecraft bus. Practical lab experiments and exercises. 

System Engineering Approach to Spacecraft Design

Mission/spacecraft design requirements, system constraints and design process. System and mission level design of spacecraft payload and bus examples. Integration and interfaces. Design mass, power and link budgets. Practical lab exercises using satellite simulator.

Mission Design Case Study

Phrase-A mission design example of a remote sensing satellite mission.


Assessment pattern

Assessment type Unit of assessment Weighting

Alternative Assessment

Not applicable: students failing a unit of assessment resit the assessment in its original format.

Assessment Strategy

The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the learning outcomes. The written examination will assess the knowledge and assimilation of terminology, concepts and theory in space engineering, as well as the ability to analyse problems and apply trade-off study principles in space mission design. The laboratory experiments will evaluate the acquired technical skills and understanding of spacecraft subsystems.

Thus, the summative assessment for this module consists of:

  • 2-hour, closed-book written examination.

  • Spacecraft Simulator Lab Report: A technical report summarizing results of experiments on five spacecraft subsystems due Tuesday Week 10.

  • Spacecraft Simulator Lab Test: A test to create and execute a sequential operational checklist with the satellite model, taking place in Week 10 class.


Any deadlines given here are indicative. For confirmation of exact date and time, please check the Departmental assessment calendar issued to you.

Formative assessment and feedback

For the module, students will receive formative assessment/feedback in the following ways.

  • During lectures, by question and answer sessions

  • By means of unassessed tutorial problem sheets (with answers/model solutions)

  • During supervised laboratory sessions

  • Via the marking of written reports

  • Via assessed coursework

Module aims

  • To introduce the design elements and process of space missions.
  • To introduce the functions and design process of the spacecraft bus and payload.
  • To provide hands-on experience of spacecraft bus design through lab-based experiments on satellite simulators.

Learning outcomes

Attributes Developed
1 Have an understanding of the system engineering approach to space mission design. KC
2 Have an understanding of the basic configuration of the spacecraft bus in terms of its subsystems and payload. KC
3 Have gained practical experience of handling power, communication, data handling, thermal, and attitude control subsystems of  spacecraft simulators based on the EyasSAT satellite model. KC

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to provide high quality student learning experience of the most up-to-date knowledge and practical experience that will enhance and develop their skills for independent academic study, digital media literacy, and working in professional contexts.

Learning and teaching methods include 3 hours lecture or lab per week x 11 weeks..


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list
Upon accessing the reading list, please search for the module using the module code: EEE2043

Other information

This module has a capped number and may not be available to ERASMUS and other international exchange students. Please check with the International Engagement Office email:

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Electronic Engineering BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems BEng (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems MEng 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.