C++ AND OBJECT-ORIENTED DESIGN - 2020/1
Module code: EEE2047
Module Overview
Expected prior learning: A good working knowledge of procedural programming, preferably in the C programming language. [Surrey EEE students should have achieved this in their Year 1 studies.
Module purpose: Object orientated programming (OOP) is a popular programming methodology for large application programming. C++ is a powerful programming language which, being backwards compatible with C, provides efficient access to low level components of a system. This makes it important for Electronic Engineering yet it is also a fully functioning industrially recognized language for large scale application programming. The module will provide students with the fundamentals of Object Orientated Design and Programming, with specific emphasis on its implementation in the C++ language.
Module provider
Electrical and Electronic Engineering
Module Leader
HADFIELD Simon (Elec Elec En)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 5
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 108
Lecture Hours: 22
Laboratory Hours: 20
Module Availability
Semester 2
Prerequisites / Co-requisites
None.
Module content
Indicative content includes the following.
[1-2] Introduction to Object-Oriented design - The case for object-oriented design. Abstraction, encapsulation, modularity, reuse of software. Overview of the course.
[3-4] A Refresher Course in C - Overview of C, Procedural Programming, Structures.
[5-8] The C++ Class - Basics of the C++ class, constructors, destructors, memory allocation, operator overloading, friend operators.
[9-12] Inheritance - Inheritance, public/private/protected, member functions/variables, casting, virtual and abstract.
[13-14] Templates - templates and generic programming, design and use.
[15-16] Standard Template Library - namespaces, streams, strings, vectors, lists, iterators, maps and algorithms
[17-18] A Review of C++ - general review of the key components of C++
[19–20] Object Orientated Design Methodology - Design issues and planning
[21–22] Revision
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Examination | 2 HOUR CLOSED-BOOK WRITTEN EXAMINATION | 70 |
Coursework | CONTINUOUS ASSESSMENT BASED ON LABS | 10 |
Coursework | Object Oriented Design coursework | 20 |
Alternative Assessment
Not applicable: students failing a unit of assessment resit the assessment in its original format.
Assessment Strategy
The assessment strategy for this module is designed to provide students with the opportunity to demonstrate both knowledge and practical expertise in the design and implementation of object oriented programmes in C++. The written examination will assess knowledge and the assimilation of terminology, concepts, syntax and features of object orientated programming paradigms, and the specific instantiation of these concepts in C++. The assignment will assess the ability of students to design and implement these skills in a practical setting.
Thus, the summative assessment for this module consists of the following.
Examination: 2-hour, closed-book written examination (70%)
Continuous Assessment based on labs: to be completed after the weekly lab sessions, before the following lab (10% total).
Coursework: A large object oriented design and programming problem (20%)
Any submission deadline given here is indicative. For confirmation of exact date and time, please check the Departmental assessment calendar issued to you.
Formative assessment and feedback
For the module, students will receive formative assessment/feedback in the following ways.
During lectures, by question and answer sessions
During optional tutorials/tutorial classes
Written feedback on the coursework
During supervised computer laboratory sessions
Via assessed coursework
Via sample design provided to the students following submission of preliminary design.
Via discussion in lectures about suitable design solutions for the assignement.
Module aims
- Familiarise students with advanced object orientated methodology, software design and implementation, assuming that
- Cover the features of the C++ language and how they relate to object orientated methodology
- Present the use of OO methodology in application programming.
Learning outcomes
Attributes Developed | ||
001 | Describe the fundamental principles of object orientated design | KC |
002 | Demonstrate the implementation of object orientated design principles in C++ | KP |
003 | Apply object orientated design to large/complex programming problems | CPT |
004 | Design and implement computer code to solve large, complex, programming problems in C++ | KCP |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is as follows. There will 2 hours of lectures per week, with an associated 2 hours of computer-laboratory-based material (starting in week 2) that will closely follow the lectured material. The purpose of the programming laboratories is for students to gain first-hand experience in applying the concepts taught in lectures.
Learning and teaching methods include the following.
Lectures: 11 weeks at 2 hours per week.
Programming Laboratories: 10 weeks at 2 hours per week.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: EEE2047
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Electronic Engineering with Computer Systems BEng (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering BEng (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Electrical and Electronic Engineering BEng (Hons) | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering with Nanotechnology BEng (Hons) | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering with Nanotechnology MEng | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering with Space Systems BEng (Hons) | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Computer and Internet Engineering MEng | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering with Space Systems MEng | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electrical and Electronic Engineering MEng | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering with Computer Systems MEng | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Electronic Engineering MEng | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Computer and Internet Engineering BEng (Hons) | 2 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.