ADVANCED GUIDANCE, NAVIGATION AND CONTROL - 2020/1
Module code: EEEM009
In light of the Covid-19 pandemic, and in a departure from previous academic years and previously published information, the University has had to change the delivery (and in some cases the content) of its programmes, together with certain University services and facilities for the academic year 2020/21.
These changes include the implementation of a hybrid teaching approach during 2020/21. Detailed information on all changes is available at: https://www.surrey.ac.uk/coronavirus/course-changes. This webpage sets out information relating to general University changes, and will also direct you to consider additional specific information relating to your chosen programme.
Prior to registering online, you must read this general information and all relevant additional programme specific information. By completing online registration, you acknowledge that you have read such content, and accept all such changes.
Module Overview
Expected prior learning: EEE3039 SPACE DYNAMICS AND MISSIONS and EEE3040 SPACE SYSTEM DESIGN, or equivalent learning, which should include a knowledge of basic control theory.
Module purpose: This module provides advanced understanding of the dynamics of satellites and of methods for controlling satellite motion.
Module provider
Electrical and Electronic Engineering
Module Leader
LUCCA FABRIS Andrea (Elec Elec En)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
JACs code: H643
Module cap (Maximum number of students): N/A
Module Availability
Semester 2
Prerequisites / Co-requisites
None.
Module content
Indicative content includes the following.
- Essential elements of control theory.
- Overview of Satellite orbits. Review of Keplerian orbits and the most useful orbits for Earth orbiting satellites. Brief introduction to time and coordinate frames and the complexities of their definition.
- Perturbation effects in real orbits. Mean and osculating elements, the disturbing function and Lagrange’s equations. Long and short periodic variations and secular evolution. Atmospheric drag modelling. Effects of Solar radiation pressure.
- Orbit determination and Estimation. Data for orbit estimation and determination, GPS, Radar tracking, Least Squares method, Weighted Least Squares Methods, Batch Least Squares method, The Extended Kalman filter.
- Rendezvous in space: Continuous thrust manoeuvres, Hill’s formulation and relative motion control, Epicycle description – inclusion of perturbing influences. Orbit control.
- Attitude dynamics. Euler and kinematic equations. Quaternions and the evolution equations. Control moment gyroscopes.
- Attitude determination and estimation: attitude sensors. Estimation methods: triad method and Quest algorithms, the Extended Kalman Filter.
- Attitude control. Attitude actuators: momentum/reaction wheels, control moment gyroscopes, thrusters, magnetotorques. Design of control loops. Lead-lag compensators. Multivariable design.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COURSEWORK | 20 |
Examination | EXAMINATION 2 HRS | 80 |
Alternative Assessment
Not applicable: students failing a unit of assessment resit the assessment in its original format.
Assessment Strategy
The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the following. The written examination will assess the knowledge and assimilation of real satellite orbits and how to model them, evaluation of real world algorithms used for attitude and orbit control, and the limitations of sensors and actuators used on modern satellites. The practical software-tool-based theoretical assignment will assess how the student can apply these models to representative cases such as rendezvous in space and the use of GPS in satellite navigation.
Thus, the summative assessment for this module consists of the following.
· 2-hour, closed-book written examination
· Software-tool-based theoretical assignment (15 to 20 pages) due Tuesday Week 10.
Any deadline given here is indicative. For confirmation of exact date and time, please check the Departmental assessment calendar issued to you.
Formative assessment and feedback
For the module, students will receive formative assessment/feedback in the following ways.
· During lectures, by question and answer sessions.
· Via the marking of written reports.
Module aims
- To develop an understanding of the complexities of real satellite dynamics, and of practical methods to determine and control spacecraft motions.
Learning outcomes
Attributes Developed | ||
---|---|---|
1 | Describe real satellite orbits and how to model them. | K |
2 | Apply these models to representative cases such as rendezvous in space and the use of GPS in satellite navigation. | P |
3 | Evaluate real world algorithms used for attitude and orbit control. | C |
4 | Explain the limitations of sensors and actuators used on modern satellites. | K |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Overall student workload
Independent Study Hours: 117
Lecture Hours: 33
Methods of Teaching / Learning
The learning and teaching strategy is designed to achieve the aims that students should
- Develop an understanding of real satellite orbits and the factors that influence (perturb) these orbits.
- Develop an understanding of real satellite attitude dynamics.
- Apply and evaluate practical methods in order to control satellite orbits.
- Apply and evaluate practical methods in order to control satellite attitude dynamics.
Learning and teaching methods include the following.
- 3-hour lecture per week x 11 weeks
- Practical problem based assignment – 57 hours
- Independent study and preparation for final exam – 60 hours
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: EEEM009
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Satellite Communications Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Space Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering with Space Systems MEng | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electrical and Electronic Engineering MEng | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering MEng | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering with Professional Postgraduate Year MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.