BATTERY AND ELECTRICAL SYSTEMS - 2020/1

Module code: EEEM065

Module Overview

Developing high-performance energy storage devices such as lithium-ion batteries could greatly promote the development of portable electronics, vehicle electrification and smart grid, alleviate environmental pollution and reduce our dependence on fossil fuels, addressing the “grand challenges” in the sustainability and resilience of environments. This module aims to introduce fundamental scientific, technological or engineering principles and technology applications of batteries used in different electrical systems. Students will learn as to the battery types, battery parts and how to test/monitor a battery. Battery performance requirement by electric vehicles, smart grids, next-generation electronics and electrical systems will also be covered in this module.

Module provider

Electrical and Electronic Engineering

Module Leader

ZHAO Yunlong (Elec Elec En)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

JACs code: H221

Module cap (Maximum number of students): N/A

Module Availability

Semester 1

Prerequisites / Co-requisites

Some knowledge of semiconductor science, electrochemistry and device engineering are expected.

Module content

Indicative content includes the following:

1. Battery Fundamentals: Describe battery types, battery parts and operation Understand how a battery converts chemical energy to electrical energy Learn how to test and monitor a battery and discover what causes batteries to fail and why testing is still in its infancy

2. Battery for electric vehicles: Describe battery performance requirement by vehicle application Introduce rechargeable lithium-ion batteries and electrochemical supercapacitors for electric vehicle

3. Battery for smart grids: Describe how battery systems can integrate renewable energy in smart grids Introduce sodium ions batteries, multivalent ion batteries and flow battery for smart grids

4. Batteries for next-generation electronics and electrical systems: Introduce microscale, flexible, transparent battery for next-generation multifunctional electronics Introduce metal–oxygen and metal-sulfur batteries: fundamentals and applications

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework ASSIGNMENT 20
Examination 2 HOUR CLOSED BOOK EXAM 80

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the learning outcomes. The coursework will help the student for their independent study. The written examination will assess the knowledge and assimilation of terminology, concepts and theory of the different parts of the module.

Thus, the summative assessment for this module consists of the following.

· 2-hour, closed-book written examination

· Coursework

Formative assessment and feedback

For the module, students will receive formative assessment/feedback in the following ways.

· During lectures, by question and answer sessions

· During tutorials/tutorial classes

· By means of unassessed tutorial problem sheets (with answers)

Module aims

  • Introduce the battery requirement by electric vehicles, smart grids, next-generation electronics and electrical systems
  • Provide the key principles and operation of batteries used in different electrical systems
  • Help students understand how to test and monitor a battery and discover what causes batteries to fail

Learning outcomes

Attributes Developed Ref
001 Describe the basic energy storage principle of metal-ion batteries, electrochemical supercapacitors and flow battery CK
002 Compare the suitability of batteries in different electrical systems CK
003 Demonstrate the operation of batteries testing and explain the what causes batteries to fail CKPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 114

Lecture Hours: 36

Methods of Teaching / Learning

The learning and teaching strategy include regular lectures from Week 1 to 10. These lectures will include the problem-solving sessions (30 hours: 3 hours lecture/tutorial per week for 10 weeks). Three hours of revision will take place in Week 11. Lecture notes will be provided, and students are expected to do independent learning in addition to attending lectures and tutorials.

Learning and teaching methods include the following.

Lectures (3hrs x 10 weeks)

Tutorials (3hrs x 1 week)

In class discussions (as part of lectures x 10 weeks)

Private study of specified articles (3hrs x 10 weeks)

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

Reading list for BATTERY AND ELECTRICAL SYSTEMS : http://aspire.surrey.ac.uk/modules/eeem065

Other information

None

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Nanotechnology and Renewable Energy MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Electrical and Electronic Engineering MEng 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Electronic Engineering with Nanotechnology MEng 1 Optional A weighted aggregate mark of 50% is required to pass the module
Electronic Engineering MSc 1 Optional A weighted aggregate mark of 50% is required to pass the module
Electronic Engineering (EuroMasters) MSc 1 Optional A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.