MATERIALS SELECTION IN MECHANICAL DESIGN - 2020/1

Module code: ENG3206

Module Overview

A lecture and tutorial based module, which build on ENG1063 (Materials and Statics), and is complementary to ENG3164 (Engineering Materials). It provide a deeper and broader appreciation of methods for selecting materials as part of mechanical design.

Materials property charts are used throughout as a means to rapid appropriation of solutions from a wide range of engineering materials. The module includes the selection of materials processes in addition to selection of materials. Approaches that enable multiple constraints and conflicting objectives to be handled are explored. Materials selection and component shape is addressed as a pointer to more sophisticated contemporary approaches such as topological optimisation. The module concludes with an overview of designing hybrid materials.

Module provider

Mechanical Engineering Sciences

Module Leader

WHITING Mark (Mech Eng Sci)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

JACs code: J511

Module cap (Maximum number of students): N/A

Module Availability

Semester 2

Prerequisites / Co-requisites

ENG1063 (Materials and Statics) and completion of the progress requirements of Level HE2.

Module content


  • Indicative content: The basics of materials selection: the selection strategy, attributes and materials indices, the selection procedure. Case studies, including couplings, seals, safe pressure vessels and heat exchangers. [9L, 3T]

  • Processes and their effect on properties. Shaping, joining, finishing. Subtractive and additive manufacture. Process-property trajectories. Process selection. Limitations and quality. [6L, 2T]

  • Multiple constraints and conflicting objectives: Selection methods for multiple constraints. Case studies: light pressure vessels, wafer-thin casings for hand-held technology, cost-effective bumpers and materials for disc-brake callipers. [6L, 2T]

  • Selection of materials and shape: a refresher on shape factors. The limits to shape efficiency. Material indices that include shape. Architectured materials: microscopic shape. Case studies, including forks for racing bicycles, shapes that flex and ultra-efficient springs. [6L, 2T]

  • Designing hybrid materials: cellular structures (foams and lattices). Sandwich structures and multilayers. Segmented structures. Case studies, including: designing metal matrix composites and exploring the efficiency of natural materials. [3L, 1T]

  • Review. [2L]


Assessment pattern

Assessment type Unit of assessment Weighting
Coursework Materials Selection Design Problem 20
Examination Unseen Examination 80

Alternative Assessment

There is no alternative assessment (a late summer assessment will follow the same assessment pattern as that followed during the running of the module in semester time).

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate:

(i) they understand how to use diverse engineering materials property data to select appropriate materials for structural applications in a variety of engineering contexts,
(ii) can use engineering materials property data to justify the selection of materials, processes and component geometry against various design goals.

Thus, the summative assessment for this module consists of:
· Assignment [learning outcomes 1 and 2]; 15 hours; (20%).
· Examination [learning outcomes 1, 2, 3 and 4]; 2 hours (80%).

Formative verbal feedback is given in tutorials.
Written feedback is given on the coursework assignment.

Module aims

  • To understand how to use diverse engineering materials property data to select appropriate materials for structural applications in a variety of engineering contexts.
  • To use engineering materials property data to justify the selection of materials, processes and component geometry against various design goals.

Learning outcomes

Attributes Developed Ref
001 Use materials property charts to make initial judgements about the selection of materials for diverse engineering design contexts. (SM2b, EA2, D1, D3b, P4) KCP
002 Understand a broad range of processes for materials manufacture and their implications for materials and process selection. (SM1b, EA1b, EA2, P2) KCP
003 Analyse the mechanics of a materials design problem so as to select materials and geometry to minimise weight, minimise environmental impact, etc. (SM2b, EA2, EA3b, D2, EL2, EL4) KCP
004 Assess when a hybrid material might provide a better design solution than a monolithic engineering material. (SM1b, SM2b, EA2, D4) KCP

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Overall student workload

Independent Study Hours: 107

Lecture Hours: 33

Tutorial Hours: 10

Methods of Teaching / Learning

The learning and teaching strategy is designed to enable students to:

(i) use materials property charts to make initial judgements about the selection of materials for diverse engineering design contexts, (ii) understand a broad range of processes for materials manufacture and their implications for materials and process selection, (iii) analyse the mechanics of a materials design problem so as to select materials and geometry to minimise weight, minimise environmental impact, etc., (iv) assess when a hybrid material might provide a better design solution than a monolithic engineering material.

The learning and teaching methods include:
33 hours of lectures over 11 weeks
10 hours of tutorials over 10 weeks
15 hours of assignment work.

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

Reading list for MATERIALS SELECTION IN MECHANICAL DESIGN : http://aspire.surrey.ac.uk/modules/eng3206

Other information

NA

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Mechanical Engineering MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.