CERAMICS AND CERAMIC COATINGS - 2020/1

Module code: ENGD027

Module Overview

Ceramics are used in bulk form or as coating materials in a wide variety of applications. The processing, properties and key uses of ceramics both as bulk and coating materials will be covered.

Module provider

Mechanical Engineering Sciences

Module Leader

DOREY Robert (Mech Eng Sci)

Number of Credits: 0

ECTS Credits: 0

Framework: FHEQ Level 8

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 30

Lecture Hours: 10

Tutorial Hours: 10

Laboratory Hours: 10

Module Availability

Semester 2

Prerequisites / Co-requisites

N/A

Module content

• Overview of bulk ceramics and ceramic coatings
• Ceramics processing – powders, green bodies, densification
• Ceramic coating processes and growth processes mechanisms
• Structural, chemical and mechanical characterisation of ceramic coatings
• Industrial applications and selection of ceramic coatings
• Mechanical properties of ceramics
• Behaviour of bulk ceramics and ceramic coatings subjected to indentation and wear processes
• Principal materials and their application areas

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework Short answer questions 50
Coursework Long answer question involving calculation, analysis, discussion involving core aspects of the module. 50

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate that they: (i) have acquired key knowledge spanning the entire subject matter (short answer questions) (ii) can use and extend this knowledge to deal with more complex or speculative situations (extended answer question) and (iii) can demonstrate a knowledge and understanding of the current state-of-the-art (applications question).

Thus, the summative assessment for this unit consists of:
• Q1 (Short answer questions) 50%
• Q2 (Essay question) 50%

Formative assessment
• Formative verbal feedback is given in lectures and tutorials.

Feedback
• Written feedback is given on the submitted coursework

Module aims

  • a systematic understanding of the techniques used to produce bulk ceramics and ceramic coatings and the influence of these on the resulting microstructures
  • a detailed knowledge of the properties of bulk ceramics and ceramic coatings and an understanding of how these properties are related to the processing routes and microstructures
  • an appreciation of the key application areas of the bulk ceramics and ceramic coatings

Learning outcomes

Attributes Developed
001 Describe, select and explain appropriate processing conditions for a range of bulk ceramic and ceramic coating materials K
002 Compare and contrast the microstructural features that will result from particular processing routes CK
003 Understand the relationships between processing, microstructural development and properties in a range of ceramic materials in bulk and coating forms K
004 Select, with the supporting rationale, and quantitative underpinning where appropriate, the most suitable materials for existing and potential applications, taking into account the need to optimise a range of complex requirements CK
005 Discuss current issues in bulk ceramics and ceramic coatings taking into account topics which are complex, conceptually challenging or K
006 Apply course subject matter for research and advanced academic enquiry

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to introduce students to various concepts and ideas via lectures then give them the opportunity to test their understanding and put them into practice, via tutorial work. This is complemented by the opportunity to observe various practical processes via laboratory demonstrations.

The learning and teaching methods include:
• 22 hours lectures
• 8 hours tutorial classes
• 30 hours coursework.

The teaching is delivered as a one-week intensive course.

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENGD027

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Micro- and NanoMaterials and Technologies EngD 2 Optional A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.