ORDINARY DIFFERENTIAL EQUATIONS - 2020/1
Module code: MAT2007
Module Overview
This module builds on the differential equation aspects of the level 1 modules Calculus and Linear Algebra and considers qualitative and quantitative aspects of Ordinary Differential Equations.
Module provider
Mathematics
Module Leader
TRONCI Cesare (Maths)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 5
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 112
Lecture Hours: 33
Seminar Hours: 5
Module Availability
Semester 1
Prerequisites / Co-requisites
MAT1030 Calculus
Module content
Indicative content includes:
- Scalar first-order differential equations; review of separable and linear equations.
- Phase portraits on the line; equilibria and their stability.
- Theorems on existence, uniqueness, continuous dependence on initial conditions.
- Linear systems of differential equations: the solution set, solution matrix and Wronskian.
- Scalar, linear higher order differential equations: relation with systems of differential equations.
- Linear, autonomous systems of differential equations: relation between stability and eigenvalues; classification of planar phase portraits.
- Nonlinear systems: equilibria and their classification, linear stability analysis, Lyapunov functions, phase portrait near an equilibrium.
- If time allows: Periodic solutions and their stability: Poincare maps; introduction to Floquet theory
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
School-timetabled exam/test | IN-SEMESTER TEST (50 MINS) | 20 |
Examination | EXAMINATION | 80 |
Alternative Assessment
N/A
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate
· Understanding of and ability to interpret and solve ODEs
· Subject knowledge through the recall of key definitions, theorems and their proofs.
· Analytical ability through the solution of unseen problems in the test and exam.
Thus, the summative assessment for this module consists of:
· One two hour examination (three of four best answers contribute to exam mark, with Question 1 compulsory) at the end of Semester 1; worth 80% module mark.
· One in-semester test; worth 20% module mark in total.
Formative assessment and feedback
Students receive written feedback via two marked coursework assignments over an 11 week period. In addition, verbal feedback is provided by the lecturer in class or during meetings of small groups e.g. in an office hour. Furthermore, weekly exercises for formative assessment are available online, feedback can be obtained in small group meetings during office hours and via online solutions (provided with a short delay).
Module aims
- This module aims to study both qualitative and quantitative aspects of Ordinary Differential Equations.
Learning outcomes
Attributes Developed | ||
1 | Find exact solutions to certain types of differential equations | KCT |
2 | Plot and interpret phase portraits on the line or in the plane | KCT |
3 | Determine the stability of equilibria and periodic solutions | KCT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to provide:
- A detailed introduction to the theory of ordinary differential equations (ODEs);
- Experience (through demonstration) of the methods used to interpret, understand and solve ODEs.
The learning and teaching methods include:
- 3 x 1 hour lectures per week x 11 weeks, with notes written on the board to supplement the module handbook and Q + A opportunities for students;
- (every second week) 1 x 1 hour seminar for guided discussion of solutions to problem sheets provided to and worked on by students in advance;
- (every second week) 1 x 10 minutes quiz to recap material and provide Q+A opportunity for students.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: MAT2007
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Mathematics with Music BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Economics and Mathematics BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics MMath | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics with Statistics MMath | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics with Statistics BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Financial Mathematics BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics and Physics BSc (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics and Physics MPhys | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Mathematics and Physics MMath | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.