INTRODUCTION TO BIOLOGY AND RADIATION BIOLOGY - 2020/1

Module code: PHYM048

Module Overview

This course starts with an overview of human biology, followed by a discussion of the nature of the interaction of ionising and non-ionising radiation with biological systems. The course emphasises the effects at the cellular level and the impact that this has on the individual and across the population. The behaviour and effects of ingested and inhaled radionuclides are also covered.

Module provider

Physics

Module Leader

SCHETTINO Giuseppe (Physics)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 117

Lecture Hours: 33

Module Availability

Semester 1

Prerequisites / Co-requisites

None.

Module content

Module content





Indicative content includes:





Lecturer


Title


Lecture Hours




Prof G Schettino


Human Biology; the cell, cardiovascular system, respiratory system, digestive system, urinary system, endocrine system, skeletal system, nervous system and sensory systems.

 


12




Prof G Schettino


Introduction to radiobiology: 5Rs of radiobiology, Biological Effective Dose

 


6




Dr C Badie


Primary events in the cell; deposition of energy from low and high LET radiations; molecular events; DNA damage and repair; cellular radiosensitivity; dose-rate and LET dependence; molecular genetics of radiation cancer, human variation in radiation sensitivity

 


3




Dr E A Ainsbury


Acute (non-stochastic) effects after whole and partial body irradiation; damage to red bone marrow, gut epithelium, gonads, optic lens and developing brain of the foetus, genetic effects of radiation; biological dosimetry

 


3




Dr T Smith/Dr J Marsh


 

Radionuclides in man; the behaviour of radionuclides in the body including isotopes of tritium, caesium, strontium, iodine, radium and plutonium; ICRP biokinetic and dosimetric models; dose calculations; doses to the embryo and foetus

 


3




Dr R Haylock


Concepts of epidemiological studies


3




Dr A Peyman


Dosimetry, practical measurements and theoretical modelling, instrumentation, antennas


3





 




Assessment pattern

Assessment type Unit of assessment Weighting
Coursework 2000 WORD ESSAY 30
Examination 1.5 HRS END OF SEMESTER EXAMINATION 70

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate their knowledge of the human anatomy and physiology and of the way radiation interacts with biological systems. It will also allow them to demonstrate their capability to research on a new topic and to independently build on knowledge acquired from lectures.

 

Thus, the summative assessment for this module consists of:



  • A 1.5 hour, closed book examination.


  • An essay (maximum 2000 words), to be submitted typically in Week 6, on a topic broadly related to the interaction of radiation with biological systems.



 

Formative assessment

A revision class with tutorial questions will be done in Week 12.

 

Feedback

Students receive written feedback on their coursework. A tutorial provides an opportunity for verbal feedback on any aspects of the course that are not understood.

 

Module aims

  • To provide an understanding of the human body and the effect on it of ionising radiation.

Learning outcomes

Attributes Developed
001 Module Specific Skills: Perform a critical analysis of basic molecular cell and tissue structures and function and a description of the principles of anatomy KC
002 Discipline Specific Skills: Describe the control systems of the human body and critically relate them to the way radiation affects them KC
003 Apply their knowledge of radiation physics to understand basic radiobiology and genetics KCP
004 Interpret case studies on radiation biology at the light of the mechanisms of interaction for ingested and inhaled radionuclides. KPT
005 Personal and Key Skills: Appreciate science underpinning radiological protection standards PT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:



  • Provide students with the theoretical foundations necessary to understand the effect of different types of radiation on the human body.


  • Allow them to apply this knowledge to specific radiation protection problems.



 

The learning and teaching methods include:



  • 33 hours of lectures, including both theoretical aspects and their application. Teaching is given via handouts, projection and white board presentations.

  • One large group tutorial/question session.



 

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM048

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Physics MSc 1 Optional A weighted aggregate mark of 50% is required to pass the module
Medical Imaging MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Medical Physics MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Radiation and Environmental Protection MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module
Nuclear Science and Applications MSc 1 Compulsory A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.