GENERAL RELATIVITY - 2020/1
Module code: PHYM053
Module Overview
This module will introduce the students to the principles and formalism of General Relativity and its applications to Black Holes and astrophysical phenomena.
Module provider
Physics
Module Leader
GUALANDRIS Alessia (Physics)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 117
Lecture Hours: 22
Laboratory Hours: 11
Module Availability
Semester 2
Prerequisites / Co-requisites
The module will assume prior knowledge equivalent to the following modules. If you have not taken these modules you should consult the module descriptors. PHY3038 Special Relativity; PHY2071 Introduction to Astronomy. Basic programming skills in either Fortran, C, C++ or Python are also required.
Module content
General relativity lectures:
• Introduction (inadequacy of Newtonian description, Special Relativity and
Minkowski metric, Einstein’s principles of equivalence)
• Mathematics of General Relativity (Forms, vectors and tensors, covariant
derivatives and connections, parallel transport and geodesics, curvature)
• Principles of General Relativity (Einstein’s field equations, the Schwarzschild
solution, testing of General Relativity, black holes)
• Gravitational radiation
General relativity computer lab:
• The two-body problem in classical mechanics
• Implementation of an N-body integrator to study the two-body problem
• The Post-Newtonian approximation
• Implementation of Post Newtonian corrections in the N-body integrator
• Application of the N-body integrator to the study of 3 astrophysical problems:
Mercury’s precession of the perihelion, the orbits of the S-stars in the centre of the
Milky Way, energy losses in black hole binaries due to emission of gravitational
radiation
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COMPUTATIONAL COURSEWORK | 30 |
Examination | END OF SEMESTER 2H EXAMINATION | 70 |
Alternative Assessment
None.
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate understanding of the formalism of general relativity, aspects of differential geometry relevant to gravitating systems and applications underpinning experimental tests of general relativity.
Thus, the summative assessment for this module consists of:
• A 2 hour final examination with two sections: Section A contains compulsory questions worth 20 marks & Section B contains three questions of 20 marks each of which the students attempt two.
• A coursework based on the computational project developed during the module.
Formative assessment and feedback
During lectures students will have group problems to apply theory covered with direct
interaction with the lecturer and feedback on their understanding.
The students will be assisted in the development of the computer code and will receive verbal feedback during the lab sessions.
Module aims
- This module aims to:
• Give the students a clear understanding of the limits of Newtonian mechanics and
Special Relativity
• Introduce the principles and formalism of General Relativity
• Show how to apply the Post Newtonian approximation to astrophysical systems
Learning outcomes
Attributes Developed | ||
001 | Understanding of the concept of tensors, manipulate simple tensorial equations and understand the elements of differential geometry in relation to describing curved space-times | KCPT |
002 | Understanding of Einstein field equations which describe the gravitational field arising from any distribution of matter | KC |
003 | Ability to solve problems involving the motion of observers around a central mass point. | KPT |
004 | Understanding of the key tests of general relativity and show how the predictions of this theory deviate from Newtonian theory | KC |
005 | Ability to describe the behaviour of observers in the vicinity of a black hole which has no charge or rotation | KCT |
006 | Ability to judge the short-comings in the Newtonian theory of gravity, the problem of defining inertial frames, and the reasons why Special Relativity fails to resolve these issues | KCT |
007 | Understanding of the Post Newtonian approximation and implement it in a numerical N-body integrator | KCPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to enable students to understand the fundamental concepts involved in General
Relativity.
The learning and teaching methods include:
• Lectures: 2 hours lecture per week x 11 weeks
• Computer Lab: 1 hour per week x 11 weeks
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM053
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Physics with Nuclear Astrophysics MPhys | 2 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Physics with Astronomy MPhys | 2 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Physics MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Physics with Quantum Technologies MPhys | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Physics MPhys | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Mathematics and Physics MPhys | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Mathematics and Physics MMath | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2020/1 academic year.