DESIGN PROJECT BENG CHEMICAL ENGINEERING - 2021/2

Module code: ENG3193

Module Overview

The detailed design of a chemical process paying appropriate consideration to sustainability, economic and operational feasibility and engineering practicality is a key skill for chemical engineers and requires a robust understanding of all aspects of chemical engineering.  This module comprises a sequence of learning opportunities designed to integrate and consolidate most of the fundamental science and engineering expertise acquired during the previous levels of the degree programme.  The assessment is design with 67% based on individual work and 33% based on group activity.

 

Module provider

Chemistry and Chemical Engineering

Module Leader

MILLINGTON Alan (Chm Proc Eng)

Number of Credits: 45

ECTS Credits: 22.5

Framework: FHEQ Level 6

Module cap (Maximum number of students): N/A

Overall student workload

Workshop Hours: 1

Independent Learning Hours: 403

Lecture Hours: 11

Tutorial Hours: 17

Guided Learning: 11

Captured Content: 7

Module Availability

Semester 2

Prerequisites / Co-requisites

Completion of the progression requirements to HFEQ Level 6 of degree courses in Chemical Engineering and Chemical and Bio-Systems Engineering or equivalent.  

Module content

Indicative content includes:

Process Design                      Module organisation, group organisation, individual process area and roll  responsibilities, report format and deadlines, Turnitin, use of library resources, physical                                                         property data

 

Process Plant Safety                Process plant control

                                   Statutory safety requirements in design

                                   Safety in process plant operation (video)

                                   Area classification/plant layout

                                   Pressure Hazards, reaction hazards, reaction runaway

                                   Fires/explosions

                                   Start-up/shutdown, ESD

                                   Hazop

                                   Common errors in design

 

Process Design Feedback/Guidance Meetings

                                                Process development

                                   Block diagrams and operating conditions

                                   Process integration

                                   Equipment requirements

                                   Material and energy balances

                                   Process control

                                   Layout

                                   Hazop

 

Business Plan                         Nature of projects, factors for success, project development

                                   Capital cost estimation, Lang factors

                                   Recuirrent and operating costs

                                   Discounting, DCF & NPV, criteria for comparative profitability

                                   Project profitability profiles

                                                Sustainability concepts, implications for process design

                                   Assessment of sustainability, IChemE sustainability metrics

                                   Application of IChemE sustainability metrics to process design, generation of design alternatives

                                   GHG emmissions, impact of carbon cost (EU Emission Trading Scheme), implication and evaluation of design changes 

 

Equipment Design                  Equipment specification

                                   Design procedures

                                   Physical property data collection and prediction                   

                                   Equipment design and optimisation

                                   Materials of construction, physical design, fabrication

                                                Equipment data sheets

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework INDIVIDUAL CONTRIBUTION TO ASSESSED FEEDBACK/GUIDANCE MEETINGS 10
Project (Group/Individual/Dissertation) PROCESS DESIGN REPORT 40
Coursework BUSINESS PLAN I) PROJECT CASE 4
Coursework BUSINESS PLAN II) ECONOMIC AND SUSTAINABILITY ASSESSMENT REPORT 14
Project (Group/Individual/Dissertation) EQUIPMENT DESIGN REPORT 29
Coursework PROCESS CONTROL COURSEWORK 3

Alternative Assessment

Unit of assessment 1 This unit of assessment cannot be replicated unless units of assessments 2 or 5 are being re-assessed.  No alternative is available. Unit of assessment 2  An alternative design of part of a process will be set and supervised during the summer vacation period for submission at the start of the late summer assessment period. Unit of assessment 3  Data from a process design will be provided to allow the Project Case and the Economic and Sustainability Assessment Report to be completed during the summer vacation for submission at the start of the late summer assessment period. Unit of Assessment 4  An alternative form of this unit of assessment is only possible if units of assessment 2 and 3 have been completed.   The student will be required to make an individual presentation to academic supervisors during the late summer assessment period. Unit if assessment 5   Data from the design carried out under unit of assessment 2 above or from a previous design report will be provided and an equipment design supervised during the summer vacation for submission at the start of the late summer assessment period. Unit of assessment 6  An alternative process will be provided for analysis

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate the full range of learning outcomes via written submissions and oral presentation.  The assessment has been design to allow individual assessment for 60% of the assessed activity with 40% based on group activity.  To facilitate this individual responsibilities within the group activities are selected by student and these are so designed that information transfer between group members and effective coordination of the overall group activity is essential to the satisfactory completion of the project.     

Thus, the summative assessment for this module consists of:


  • Contribution to Assessed Feedback/Guidance meetings -  10% (individual mark), (LO1 and LO2)

  • Process Design Report -  42% (26% individual mark, 16% group mark), 180 pages + appendices, (LO1, LO2, LO3, LO4, LO8)

  • Business Plan – 18% (9% individual mark, 9% group mark), 40 pages + appendices (LO2, LO5, LO8)

  • Presentation of Process Design and Business Plan – 4% (2% individual, 2% group), 15 minutes presentation + 7 minutes questions (LO1, LO2, LO5)

  • Equipment Design Report – 25% (17% individual, 8% group), 100 pages + appendices, (LO6, LO7, LO8, LO9)

  • Process Control Coursework – 3% (individual), 2 pages + PFD, (LO4)



Formative assessment

Area simulation – week 3

Equipment sizing procedures – week 4

Initial sustainability assessment – week 4

Area equipment sizing – week 5

Initial CAPEX based on area equipment sizing – week 5

Area PFD – week 6

Outline Layout/Utilities PFD/Hazard Analysis – week 6

OPEX and outline process profitability analysis – week 6

Updated sustainability assessment – week 7

Equipment Design Specification – weeks 9 and 10

Feedback

 

Weekly verbal freedback during feedback/guidance meetings, written feedback on area simulations, equipment sizing procedures, area equipment sizing calculations, area PFDs and equipment design specification.

Comprehensive verbal feedback on the last day of the semester on the submitted reports (double marking all the reports and giving feedback before this date is impossible).

Module aims

  • A systematic appreciation and critical awareness of industrial scale process and equipment design and their importance to chemical industry
  • The experience of integrating the design methodology and fundamental analysis taught earlier in the programme through the completion of the process design of a complex industrially relevant production process working within a small compatable group of BEng students
  • A comprehensive appreciation of the complexity of interactions (process, economic, sustainability , operability and safety)  which must be considered and analysed during a process design with understanding of the business criteria to be met for the project to be approved for project execution.
  • A critical awareness of the importance of properly integrating equipment design with the optimisation of a process design
  • A comprehensive appreciation of the need for accurate and verifyable physical property data for us in design
  • The experience of carrying out an optimised detailed design of a complex item of chemical process plant

Learning outcomes

Attributes Developed
1 Confidently analyse the factors involved in completing the mass and energy balances of a complex chemical production process with multiple internal recycles, the principles of plant start-up/shutdown, layout and the health and sustainability considerations inherent to the design process.       (LO1 C, K, P) KC
2 Work effectively as a member of a design team (usually 4 to 6 members) converting a design brief into a feasible process design accepting responsibility for specified parts of the group activity as well as for specific parts of the process being designed. KCPT
3 Effectively analyse the interactions between process requirements and practical equipment design.         KP
4 Create an appropriate control systems for individual process units, a combination of units and the process overall.       KC
5 Effectively prepare a business plan which evaluates the business need, estimates the capital cost and determines the economic incentives, and assesses the sustainability of the process designed. Both a written submission and oral presentation will be made.        KCPT
6 Working with one other student confidently generate an unambiguous equipment specification based on the process flow diagram of the process design. KP
7 Identify and confidently analyse the fundamental chemical and physical phenomena associated with the complex piece of equipment being designed.    KC
8 Confidently collect/generate the physical property data necessary to for design making appropriate judgements to reconcile conflicts.     KC
9 Propose a logical procedure for the design of a specified item of equipment, effectively use the procedure to design with appropriate iterations/optimisation and to generate the necessary equipment data sheets including the selection of the materials of construction and the methods of fabrication and testing.             KP

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:


  • Allow students to work in a group (4 to 6 members for the process design, costing and sustainability and 2 members for the equipment design) and experience the design process appropriate to that required by the IChemE Accreditation for BEng students in Chemical Engineering

  • Allow students to experience a learning environment of supervised feedback/guidance meetings with two supervisors in which they report on their progress against targets set during the previous meeting and receive immediate verbal feedback, ask for and receives clarification of their understanding/interpretation and agree a set of targets for their group and individual work to be achieved by the next meeting.

  • Act as independent learners supported by the tutorial system with additional timetabled but voluntary contact hours with supervisors, controlled by a docket system.  Each design groups has dockets (2 per group member) each permitting 10 minutes discussion with a supervisor for either the entire group or part of the group and each group member has 13 dockets (8 for Process Design/Business Plan and 5 for Equipment Design) permitting 5 minute of contact on a one-one basis with a supervisor.  Non docketed contact time with supervisors is strongly discouraged.    



The learning and teaching methods include:


  • Lectures                                                                     6 hours per week for 3 weeks

  • Group/individual feedback/guidance meetings                2 hour per week for 13 weeks (average)

  • Presentations                                                             4 hours in week 10

  • Independent learning                                                  31 hours per week for 13 weeks (average)


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENG3193

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Chemical Engineering BEng (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2021/2 academic year.