MEDICINAL CHEMISTRY - 2022/3
Module code: CHE3062
Module Overview
The module provides well-rounded knowledge and understanding of medicinal chemistry. Through its employment of example drug discovery projects from the research areas of viruses, antibiotics, diabetes, adrenergic receptors, cancer, including nuclear medicine, nanotherapeutics and inorganic medicinal chemistry, it provides students with an appreciation of design and discovery strategies which should allow them to critically evaluate new medicinal chemistry projects as well as suggest new research directions and ideas for improvements.
Module provider
Chemistry and Chemical Engineering
Module Leader
WHELLIGAN Daniel (Chst Chm Eng)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 6
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 112
Lecture Hours: 17
Tutorial Hours: 7
Captured Content: 14
Module Availability
Semester 2
Prerequisites / Co-requisites
None
Module content
Indicative module content:
Advanced binding interactions: ΔG, binding role of functional groups and amino acids, the hydrophobic effect.
Structure-Activity Relationships (SARs), medicinal chemistry strategy and synthesis
Viruses and antiviral drugs. Vaccines and antiviral drugs. DNA chain terminators. Enzymes: kinases, peptidases, reversible inhibitors.
Adrenergic receptors: GPCRs, agonists, antagonists, partial agonists, affinity, efficacy, potency. Associated drugs, their mechanisms of action and discovery.
Antibiotics, their discovery. Natural and semisynthetic β–lactams (penicillins and cephalosporins), their mechanism of action. Other antibiotics, the problem of drug resistance (MRSA etc).
Diabetes, mechanisms of action of insulin and drugs. Discovery of new therapeutics. Kinase-linked receptors, ligand gated ion-channel receptors, signal transduction.
Cancer and chemotherapy. Nucleic acids as drug targets. The design of modern targeted therapeutics.
Metal ions and chelating agents in therapy. Ligand design, choice of metal ion and targeting strategies.
Radioisotopes for biological imaging and therapy. Ligand design and targeting strategies.
Radioisotope production, radioloabelling and radioimmunoassay
Nanotherapeutics
Process chemistry, scale-up.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | COURSEWORK | 30 |
Examination Online | ONLINE OPEN BOOK EXAM (4 hours) | 70 |
Alternative Assessment
None.
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate:
• the ability to research, understand and critically evaluate drug discovery programmes reported in the literature, against a target not met in lectures, by applying knowledge gained in the module;
Thus, the summative assessment for this module consists of:
• coursework incorporating a review of medicinal chemistry programmes on a given target
• online examination (4 h)
Formative assessment
Problems relevant to recent material are provided and solved in tutorials interspersed throughout the semester.
Feedback
Feedback to the written review consists of annotations on the returned document and a breakdown of marks into specific headings along with written general feedback giving justifications for the marks and suggestions for improvement.
Module aims
- • give students an advanced understanding of how therapeutics work and are designed, discovered and developed.
- • provide students with a conceptual understanding of drug discovery, for several disease classes, through medicinal chemistry examples
Learning outcomes
Attributes Developed | ||
001 | Understand the targeting of biological pathways with drugs to treat several major disease classes | KC |
002 | Review and critically evaluate material describing the mode of action, discovery and development of known drugs | CPT |
003 | Apply medicinal chemistry methods for the determination of structure-activity relationships and improvement of drug pharmacodynamics and pharmacokinetics and suggest synthetic routes | KCP |
004 | Understand and critically evaluate late-stage and modern drug development strategies including process chemistry and the design of nanotherapeutics | KC |
005 | Conceptually rationalise the role of metal complexes in diagnostics and therapy and be able to solve problems related to their use | KCP |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to:
• build on students’ knowledge of the drug discovery process, methods and characteristics of drugs by providing them with a fuller understanding of considerations during their design through the use of case studies in several specific areas.
• provide students with an ability to understand new drug discovery programmes, critically evaluate them and suggest future work or improvements.
The learning and teaching methods include:
formal lectures
problem-solving tutorials
coursework: a written critical review of published medicinal chemistry programmes for a given biomolecular target, not discussed in lectures, followed by suggested future directions
revision tutorial
written exam
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: CHE3062
Other information
None.
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Chemistry BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Chemistry with Forensic Investigation BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.