FUNDAMENTALS OF MOBILE COMMUNICATIONS - 2022/3
Module code: EEEM017
In light of the Covid-19 pandemic, and in a departure from previous academic years and previously published information, the University has had to change the delivery (and in some cases the content) of its programmes, together with certain University services and facilities for the academic year 2020/21.
These changes include the implementation of a hybrid teaching approach during 2020/21. Detailed information on all changes is available at: https://www.surrey.ac.uk/coronavirus/course-changes. This webpage sets out information relating to general University changes, and will also direct you to consider additional specific information relating to your chosen programme.
Prior to registering online, you must read this general information and all relevant additional programme specific information. By completing online registration, you acknowledge that you have read such content, and accept all such changes.
Module Overview
Expected prior/parallel learning: It is helpful, but not essential, to take module EEE3006 – Digital Communications, or to have equivalent learning.
Module purpose: This module equips students with fundamental knowledge and skills of mobile/personal communications systems design, and forms the basis for the students to conduct further learning of advanced mobile technologies in EEEM018 – Advanced Mobile Communication Systems and EEEM061 – Advanced 5G Wireless Technologies.
Module provider
Electrical and Electronic Engineering
Module Leader
MA Yi (Elec Elec En)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
JACs code: H640
Module cap (Maximum number of students): N/A
Module Availability
Semester 1
Prerequisites / Co-requisites
None.
Module content
Indicative content includes the following.
Fundamental theory of communications, mobile communications, and wireless networks: modelling point-to-point communications; elements of mobile communication systems; elements of wireless networks which include fundamental problems of multiple access channel, broadcast channel, relay channel, two-way channel. and crosstalk channel. Capacity theorems and outage behaviour of fundamental channel models will be introduced. Application use-cases which relate theory to practice.
Mobile Propagation Channel & Physical Impairments: Large-scale path loss. Small-scale fading (mobility and channel time variation, wideband channel and frequency selectivity, timing, channel diversity), noise temperature. Theory and practice of handling the impact of physical channels.
Interferences and Competition: Four-terminal interference channel; Signal-to-interference noise ratio (SNR/SINR); Fundamentals of interference behaviour; Capacity theorem in competition environments.
Energy efficiency: Energy vs. Spectral Efficiency; modelling cellular system power/energy consumption; energy efficiency - spectral efficiency trade-off in cellular system
Air-Interface, Waveforms & Multiple-access: Common elements of an air interface; fundamentals of 4G waveforms and beyond; from waveform to multiple-access
Resource Allocation & Optimisation: Static vs. dynamic resource allocation; user and power allocations; elements of convex optimisation.
Densification & Heterogeneous Network: Densification process & small cells; fundamental of heteronegeous network; implementing densification (backhauling, cell association, load balancing, handover issues in heteronegeous network)
Cooperative communication: fundamental of relay based (supportive) communication (Amplify and Forward); fundamental of joint processing communication (cooperation vs. coordination); implementing cooperative communication
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Examination | 2-HOUR, CLOSED-BOOK WRITTEN EXAMINATION | 80 |
Coursework | TECHNICAL REPORT | 20 |
Alternative Assessment
Not applicable: students failing a unit of assessment resit the assessment in its original format.
Assessment Strategy
The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the following.
· Group written reports, which are assessed by the lecturers Written feedback is given to the students.
· Closed-book examination.
Thus, the summative assessment for this module consists of the following.
· Joint technical written report on selected topics in wireless environment (20%).
· 2 hrs closed-book examination (80%).
Formative assessment and feedback
For the module, students will receive formative assessment/feedback in the following ways.
· During lectures, by question and answer sessions
· During tutorials/tutorial classes
· Via the marking of written reports
· Via assessed coursework
Module aims
- The aim of the module is to equip the students with the knowledge of mobile/personal communications engineering fundamentals, present the problems and possible solutions as well as familiarise them with the currently operational digital mobile communication systems in and their comparisons, as well as the international standardisation activities on future systems.
Learning outcomes
Attributes Developed | ||
---|---|---|
1 | Describe the need and main purpose for the basic building blocks in modern mobile communication systems including the mobile propagation channel, relaying channel, interference behaviour, cooperative communications, MIMO, OFDM | KC |
2 | Explain the underlying principles of mobile communication systems | K |
3 | Analyse/simulate/solve simple problems involved in link-level design | KCP |
4 | Explain the underlying concept and reasons for different design choices | K |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Overall student workload
Independent Study Hours: 117
Lecture Hours: 33
Methods of Teaching / Learning
The learning and teaching strategy is designed to achieve the following aims.
- To equip students with deep understanding of the fundamental theory of mobile communications
- To facilitate students with strong capability of devising mobile communication systems and link-level resource planning.
- To develop the students’ ability to work within the mobile communications industry and quickly perform a useful role in analysing, designing or managing mobile communication systems, or to enter an advanced research programme on this topic
Learning and teaching methods include the following.
- Lectures: 11 weeks – 33 hours (including 3 hours Revision)
- Labs/Assignment(s): Mobile Communications Systems simulation exercise, or assignment - set and marked by the lecturers (issued week 1, due in week 7, 10 respectively). Estimated time to complete work: 42 hrs.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: EEEM017
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Electronic Engineering MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
5G and Future Generation Communication Systems MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Artificial Intelligence MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Mobile and Satellite Communications MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Computer and Internet Engineering MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Communication Systems MEng | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering with Space Systems MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering with Computer Systems MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering with Professional Postgraduate Year MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
RF and Microwave Engineering MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Electrical and Electronic Engineering MEng | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Communications Networks and Software MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Electronic Engineering (by short course) MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.