# CURVES AND SURFACES - 2022/3

Module code: MAT2047

In light of the Covid-19 pandemic the University has revised its courses to incorporate the ‘Hybrid Learning Experience’ in a departure from previous academic years and previously published information. The University has changed the delivery (and in some cases the content) of its programmes. Further information on the general principles of hybrid learning can be found at: Hybrid learning experience | University of Surrey.

We have updated key module information regarding the pattern of assessment and overall student workload to inform student module choices. We are currently working on bringing remaining published information up to date to reflect current practice in time for the start of the academic year 2021/22.

This means that some information within the programme and module catalogue will be subject to change. Current students are invited to contact their Programme Leader or Academic Hive with any questions relating to the information available.

Module Overview

The module has three parts. The first part is the study of plane curves in 2D and space curves in 3D and their properties. The second part develops the definition of surfaces in 3D and their properties. The third part is the study of curves such as geodesics within surfaces in 3D.

Module provider

Mathematics

Module Leader

BRODY Dorje (Maths)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 5

JACs code: G100

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 106

Lecture Hours: 11

Seminar Hours: 11

Guided Learning: 11

Captured Content: 11

Module Availability

Semester 1

Prerequisites / Co-requisites

MAT1005 Vector Calculus and MAT1034 Linear Algebra

Module content

The module introduces the study of curves and surfaces in Euclidean space. The geometry of curves involves the concept of torsion (twisting out of a plane) and curvature (twisting away from a line), and the geometry of surfaces involves the mean and gaussian curvatures (the bending away from a plane).

The topics covered include arc length, Frenet frames, calculus on curves and surfaces, tangent vectors of curves and surfaces, geodesics on surfaces and their role as the shortest distance between two points, the normal vector of a surface, and integration along surfaces. Examples of surfaces are spheres, tori, ruled surfaces, surfaces of revolution, and minimal surfaces. Examples from mechanics, computer graphics and other areas are used for illustration. The module consists of five parts

- Planar curves: representation, arc-length, parameterisation, curvature
- Space curves: representation, arc-length, parameterisation, curvature, torsion
- 2D surfaces in 3D: representation, tangent space, normal space, metrics, calculus
- Paths in surfaces: length and speed, curves with zero geodesic curvature
- Curvature of surfaces: mean curvature, Gaussian curvature, implications of curvature

Assessment pattern

Assessment type | Unit of assessment | Weighting |
---|---|---|

ONLINE TEST | 20 | |

ONLINE EXAM | 80 |

Alternative Assessment

N/A

Assessment Strategy

The __assessment strategy__ is designed to provide students with the opportunity to demonstrate:

· Understanding of fundamental concepts and ability to develop and apply them to a new context.

· Subject knowledge through recall of key definitions, formulae and derivations.

· Analytical ability through the solution of unseen problems in the test and examination.

Thus, the __summative assessment__ for this module consists of:

· One two hour examination (3 of best 4 answers contribute to the examination mark) at the end of the semester, worth 80% of the overall module mark

· Two in-semester tests, each contributing 50% to one unit of assessment mark worth 20% of the module mark

__Formative assessment and feedback__

Students receive written feedback via the marked in-semester tests. The solutions to the in-semester tests are also reviewed in the lecture. Two un-assessed courseworks are also given to the students for submission, and complete solutions to these are also provided. In addition, verbal feedback is provided during lectures and office hours.

Module aims

- The main aim of this lecture course is to introduce the differential geometry of curves and surfaces in three-dimensional Euclidean space. A secondary aim is to show how diverse topics, such as vector calculus, linear algebra and differential equations are brought together to advance understanding of a new topic, which has implications for both pure mathematics and applied mathematics.

Learning outcomes

Attributes Developed | ||
---|---|---|

1 | Demonstrate understanding of geometric properties of curves and surfaces, and how first year calculus and linear algebra underpins the new concepts. | K |

2 | Interpret and apply basic concepts and theorems in linear algebra and vector analysis to the new topic. | KCT |

3 | Develop formulae for curvature and apply them to a range of examples, using the theory developed in the module. | KC |

Attributes Developed

**C** - Cognitive/analytical

**K** - Subject knowledge

**T** - Transferable skills

**P** - Professional/Practical skills

Methods of Teaching / Learning

The __learning and teaching__ strategy is designed to provide:

- A detailed introduction to geometric properties of curves and surfaces, extending the ideas learned in calculus and linear algebra in the first year to a new context
- Experience (through demonstration) of the methods used to interpret, understand and solve problems in differential geometry

The

__learning and teaching__methods include:

- 3 X 1 hour lectures per week for 11 weeks,
- Supplementary notes for topics of significant difficulty or special interest
- Q+A opportunites for students

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk

Upon accessing the reading list, please search for the module using the module code: **MAT2047**

Programmes this module appears in

Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|

Mathematics MMath | 1 | Optional | A weighted aggregate mark of 40% is required to pass the module |

Mathematics with Statistics MMath | 1 | Optional | A weighted aggregate mark of 40% is required to pass the module |

Mathematics with Statistics BSc (Hons) | 1 | Optional | A weighted aggregate mark of 40% is required to pass the module |

Mathematics BSc (Hons) | 1 | Optional | A weighted aggregate mark of 40% is required to pass the module |

Mathematics with Music BSc (Hons) | 1 | Optional | A weighted aggregate mark of 40% is required to pass the module |

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.