NUCLEAR REACTOR AND HEALTH PHYSICS - 2022/3

Module code: PHYM063

Module Overview

This course describes the international legislative framework of radiation protection. From this starting point the course covers population and personal exposures to radiation, the principles of dose calculations, and example procedures for implementing radiation protection programmes. Nuclear reactors, their physics and operation are described. Nuclear reactor safety case work is also discussed. The module completes with a general assessment of the concept of risk.

Module provider

Mathematics & Physics

Module Leader

REGAN Patrick (Maths & Phys)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 75

Lecture Hours: 32

Tutorial Hours: 3

Guided Learning: 10

Captured Content: 30

Module Availability

Semester 2

Prerequisites / Co-requisites

None.

Module content





Lecturer


Title


Lecture Hours




 Prof R Clarke

 

 

 

 


History of Radiological Protection: The development of ICRP Policy over 80 years. 

The Risks of Exposure to Ionizing Radiation; ICRP Dosimetric Quantities and Units.

The 2007 Recommendations of ICRP; Protecting People in the Event of a Radiological Emergency.

The Current Programme of Work of ICRP.


    9




Prof PH Regan


Reactor physics, neutron induced fission, energy release in fission, concept of neutron flux and cross-section, neutron cycle in thermal reactors, criticality, the four and six factor formulae, beta-delayed neutrons for control, moderators, nuclear power output calculation, breeder reactions. Radioisotope inventory of irradiated fuel, amounts produced, fissile and fertile materials.  Differences between thermal reactors and fast reactors; the role of plutonium and higher isotopes.

Reactor control and operation, neutron lifetime and delayed neutrons.


   9




 P Bryant


Nuclear Safety and the Regulatory Regime

Radiation Protection and Regulatory Regime.

It will cover aspect as:

Nuclear safety

Shielding design and modelling

Dose modelling

Safety cases

Radioactive waste management and disposal

 


   12




Assessment pattern

Assessment type Unit of assessment Weighting
Online Scheduled Summative Class Test CLASS TEST 1 Hour 50
Coursework ESSAY 50

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate both knowledge across the whole breadth of the module and a deeper cognitive/analytical ability alongside deeper knowledge in specified areas.

The 10 short questions of the assessment package are able to test knowledge and understanding of a broad range of topics covered in the module. The essay question is aimed at assessing the knowledge of specific chosen topics and depth of understanding expected at this level on nuclear reactor and health physics.

Thus, the summative assessment for this module consists of:



  • Class Test (50%): 10 multiple choice questions in a closed book end of module invigilated Surreylearn test are aimed at testing knowledge and understanding of the broad range of topics covered in the module.


  • Essay (50%): Essay questions aimed at assessing the knowledge of specific chosen topics and depth of understanding expected at this level on nuclear reactor and health physics (2000 words).



Formative assessment and feedback


  • Formative verbal feedback is given in lectures.



Written feedback is given on coursework 1 (class test), which is submitted and returned to the students in advance of coursework 2 (essay).

 

Module aims

Learning outcomes

Attributes Developed

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching methods include:


  • Lectures 

  • Coursework 



The teaching is delivered as a one-week intensive course.

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM063

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Nuclear Science and Applications MSc 2 Compulsory A weighted aggregate mark of 50% is required to pass the module
Physics MSc 2 Optional A weighted aggregate mark of 50% is required to pass the module
Radiation and Environmental Protection MSc 2 Compulsory A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.