ENVIRONMENTAL AERODYNAMICS AND WIND POWER - 2023/4

Module code: ENGM299

Module Overview

This module offers an introduction to industrial aerodynamics and wind engineering, covering applications of aerodynamics to areas beyond the classical aerospace ones. Particular focus is given to the main characteristics of natural winds, concentrating on four aspects:


  • Meteorology and the atmospheric boundary layer

  • Wind power aerodynamics

  • Pollutant dispersion in the atmosphere

  • Building aerodynamics



The above applications are designed to introduce students to wider applications of aerodynamics not covered elsewhere in the aerospace and mechanical engineering programmes.

Module provider

Mechanical Engineering Sciences

Module Leader

CARPENTIERI Matteo (Mech Eng Sci)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 7

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 107

Lecture Hours: 22

Tutorial Hours: 10

Guided Learning: 11

Module Availability

Semester 2

Prerequisites / Co-requisites

n/a

Module content

Basic meteorology - the development and structure of the atmospheric boundary layer;

Description of flow patterns around basic structural shapes and terrain features;

Wind turbine aerodynamics and modelling;

Wind farms and wind farm economy;

Wind loading on buildings, structures and component elements;

Environmental effects of flow around buildings;

Dispersion in and above the atmospheric boundary layer;

Dispersion models, their strengths and weaknesses.

Assessment pattern

Assessment type Unit of assessment Weighting
Oral exam or presentation Group presentation 50
Examination Exam (2 hrs) 50

Alternative Assessment

Individual coursework will subsitute the group presentation in the Late Summer Assessment

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate understanding of scientific principles, the ability to adapt and apply those principles to specific calculations and the ability to describe aspects of environmental aerodynamic phenomena and wind turbine design. The coursework will involve the analysis of a case study and a final presentation in small groups.

Summative assessment

Group presentation (LO 1,3,4,5)

 Examination (LO 1-6)

Formative assessment and feedback

Formative verbal assessment is given in tutorials and during the guided teaching activities.
Written feedback is given on the coursework assessment/presentation.

Module aims

  • To provide students with a general understanding of:
    the physics of atmospheric flow;
  • the aerodynamics of wind turbines and wind farms;
  • the physics of dispersion in the atmosphere and awareness of the methods available for its prediction;
  • the general wind effects associated with buildings and terrain, including basic flow patterns and pedestrian comfort.

Learning outcomes

Attributes Developed
Ref
001 Understand, analyse and use meteorological and related data describing wind and turbulence conditions in the atmosphere near the ground KC M1,M2
002 Understand and apply methodologies to carry out wind loading design of basic shapes of buildings and structures K M1,M5
003 Recognise structural arrangements or layouts of building groups which may present problems due to wind effects and how these may be rectified KC M2
004 Appreciate the advantages and limitations of wind tunnel testing for obtaining wind loads on complex structures and concentration level downwind of sources KC M1,M2
005 Understand the main issues affecting the dispersion of emissions from a wide variety of source types, conduct analyses of ground level concentrations K M1,M2,M3,M6
006 Understand the basic aerodynamic design of wind turbines K M1,M2,M5

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to introduce the basic principles of industrial aerodynamics with worked examples. This is delivered principally through lectures and tutorial classes. Practice is covered through case studies and an assessment solving basics test cases.

The learning and teaching methods include:


  • Lectures 22 hours (2 hrs x week)

  • Guided learning and seminars 11 hours (1 hr x week)

  • Tutorials 10 hours (1 hr x week, weeks 2-11)

  • Independent learning 107 hours


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENGM299

Other information

n/a

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Aerospace Engineering MEng 2 Optional A weighted aggregate mark of 50% is required to pass the module
Mechanical Engineering MEng 2 Optional A weighted aggregate mark of 50% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.