Module code: PHY3041

Module Overview

The first part of the module explores different aspects of the structure of atomic nuclei, starting from basic principles and leading to current research themes. There is an emphasis on the physical limits to nuclear binding and nuclear reactions.

The second part of the module explains how nuclei are synthesised in the Universe. Different processes, such as the burning phase, r, s, p are discussed. The relevance of nuclear structure and reaction physics is discussed.

Module provider

Mathematics & Physics

Module Leader

PODOLYAK Zsolt (Maths & Phys)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 117

Lecture Hours: 25

Tutorial Hours: 8

Module Availability

Semester 1

Prerequisites / Co-requisites

Nuclear and Particle Physics (BSc Physics Year 2 equivalent)

Module content

Indicative content includes:

Nuclear structure: nucleon-nucleon force, the shell model, spin-orbit force, Pauli principle, evidence for shells, single-particle structure, collective (vibrational and rotational) structures. Limits of stability, super-heavy nuclei, proton and neutron drip lines.

Nuclear reactions: Types of nuclear reactions. Coulomb barrier, cross sections. Elastic and inelastic scattering, fusion, deep inelastic, fragmentation reactions. Conservation laws.

Nuclear Astrophysics processes: abundances, nuclear fusion in starts, hydrogen burning, He burning and other burning processes.  Heavy element production via s, r and p processes and astrophysical sites.

Stellar reaction rates: general characteristics of thermo-nuclear reactions, reaction rate calculations, cosmo-chronometry, and the role of experiments.

Assessment pattern

Assessment type Unit of assessment Weighting
School-timetabled exam/test CLASS-TEST (1 hour) 30
Examination EXAM (2 hours) 70

Alternative Assessment


Assessment Strategy

The assessment strategy is designed to provide the students with the opportunity to demonstrate their knowledge of concepts behind Nuclear Astrophysics.  

Thus, the summative assessment for this module consists of:

  • A 2 hours duration examination at the end of semester, with a section A of compulsory questions and a section B with 2 questions chosen from 3. (In Part A all questions (40 points); in Part B answer two questions out of three (10-points each). If all three questions in Part B are attempted only the best two will be counted). Full marks in the examination will be equivalent to 70% of the total marks available in assessment of this module.

  • A one hour multiple-choice class test on SurreyLearn during week 8. Full marks in the class test will be equivalent of 30% of the total marks available in the assessment on this module.

Formative assessment and feedback:

There will be about 7-8 hour tutorials. The students will receive verbal feedback on their performance during the tutorials.


Module aims

  • provide a basic understanding of the complex structure of atomic nuclei and the limits of their stability. Also how these can be studied via nuclear reactions.  To ensure that the student has a clear understanding of the processes in start, and also the information needed from nuclear physics in order to quantify these processes.

Learning outcomes

Attributes Developed
1 Describe the main features of nuclear forces, nuclear shells, collective excitation modes and nuclear stability. They will recognise types of nuclear reactions according to incident energy, impact parameters and outcomes. This knowledge will be applied to nuclear astrophysics. The student will be able to assess the fusion burning in starts, as well as the production of element heavier than iron mainly via neutron induced processes. They will be able to formulate and quantify the reaction rates and the effect of quantum tunnelling and temperature in stars.

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

33 hours of lectures/tutorials.

Lectures will be used to present the material on the topic of Nuclear Structure.

Starting from week 4, there will be 1 hour long tutorials per week (8  tutorials in total). This will be used for problem solving, based on the material discussed in the lecture sessions. It will test the knowledge of the students and it will provide feedbacks for students on an individual level.




Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list
Upon accessing the reading list, please search for the module using the module code: PHY3041

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2024/5 academic year.