ADVANCED NUCLEAR ASTROPHYSICS - 2024/5
Module code: PHY3059
Module Overview
This module aims to provide an advanced level understanding of the physics of stars and nuclear astrophysics. In particular, the course will provide an understanding of advanced nucleosynthetic pathways, an analytical underpinning of resonant reaction rates, together with the experimental techniques involved in their determination.
Module provider
Mathematics & Physics
Module Leader
LOTAY Gavin (Maths & Phys)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 6
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 79
Lecture Hours: 22
Tutorial Hours: 11
Laboratory Hours: 6
Guided Learning: 10
Captured Content: 22
Module Availability
Semester 2
Prerequisites / Co-requisites
N/A
Module content
• Overview of nuclear landscape and the importance of stars in the formation of the chemical elements
The Physics of Stars
• Basic observations and stellar parameters – Hertzsprung-Russell diagram, Mass-Luminosity relationship and colour
• Gravitational contraction and hydrostatic equilibrium
• Main Sequence stellar structure
• Late stellar evolution and compact astronomical objects
Nucleosynthesis paths
• Motivation for neutron-capture nucleosynthesis process. Differences between stable and explosive nucleosynthesis.
• Slow neutron capture process: nucleosynthetic path, physical properties, astrophysical site
• Rapid neutron capture process: nucleosynthetic path, physical properties, astrophysical site
• Other nucleosynthetic process (gamma-process, rp-process) of relevance.
Experimental determination of Resonant Stellar Reaction Rates
• Basic overview of nuclear reactions: energetics; Q-values, reaction cross sections and concept of particle-emission thresholds (Sn, Salpha and Sp)
• Experimental determination of Q-values – Mass measurements with Ion Penning Traps and Heavy-ion Storage Rings.
• Resonant reactions with neutrons and charged particles – concept of broad and narrow resonances.
• Analytical formalism for narrow and broad resonance contributions to stellar reaction rates – key nuclear physics properties of resonance energy, spin and particle partial widths.
• Experimental techniques for the determination of resonant stellar reaction rates –
1. Direct methods using recoil mass spectrometers and need for radioactive ion beams. Direct methods using neutrons and time-of-flight facilities: (n,gamma) as well as (n,p) for vp-process.
2. Indirect methods: (i) Charge exchange reactions, such as (3He,t), and angular distributions (ii) γ-ray spectroscopy; role of angular distributions, lifetimes and mirror symmetry, (iii) β-delayed particle decay spectroscopy; selection rules and logft values, (iv) Measurements of alpha-particle decay branches using transfer reactions and (iv) Spectroscopic factors from (d,p) and (3He,d) transfer reactions and principles of scattering theory.
3. Broad resonance studies and R-Matrix theory: example of 18F(p,alpha) and its role in the destruction of the potential cosmic gamma-ray emitter 18F in novae.
Contemporary Nuclear Physics Facilities
• Overview of nuclear physics research worldwide and types of facilities available.
• Nuclear experiment datasets and their manipulation.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | MESA Coursework | 30 |
Examination | End of Semester Examination - 2 hours | 70 |
Alternative Assessment
None
Assessment Strategy
The proposed assessment strategy for this module will involve:
• Coursework set prior to Easter break.
• A final, 2-hour closed book examination where students will answer a series of short compulsory questions and 2 questions from a set of 3 of longer questions.
Formative assessment is provided in class tutorials, where students tackle both numerical and descriptive problems related to the course.
Verbal feedback is provided in lectures, class tutorials and laboratory sessions.
Module aims
- Provide an understanding of the underlying physics behind the formation of stars and stellar evolution, including computational modelling.
- Provide an understanding of nucleosynthesis paths: s-process, r-process and p-process; the physical properties and their astrophysical sites;
- Provide an understanding of nuclear reaction networks and their relevance in stellar modelling, including contemporary computational tools
- Provide an analytical treatment of resonant stellar reaction rates for both narrow and broad resonance contributions, together with a detailed understanding of the modern experimental techniques used in obtaining the key nuclear physics information required.
- Provide an understanding on current experiment nuclear facilities and the types of datasets that are in place.
Learning outcomes
Attributes Developed | ||
001 | The student will be knowledgeable about current stellar models and will be able to describe how stars of different masses are born and evolve in time. The student will understand the Hertzsprung-Russell diagram. The student will identify the different density and temperature regimes occurring inside stars and will be aware of how dense quantum fluids and extremely hot relativistic gases impact stellar properties. | K |
002 | The student will be able to describe in detail different nucleosynthetic paths, including the various nuclear physics data required to build them and the nuclear reaction networks involved. | K |
003 | The student will be able to perform resonant stellar reaction rate calculations at given temperatures for a variety of reactions. | CK |
004 | The students will have understanding of contemporary nuclear physics facilities and the types of experiments that can be run in them. | KP |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching methods include: Formal lecture based module
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHY3059
Other information
The School of Mathematics and Physics is committed to developing graduates with strengths in Employability, Digital Capabilities, Global and Cultural Capabilities, Sustainability, and Resourcefulness and Resilience. This module is designed to allow students to develop knowledge, skills, and capabilities in the following areas:
• Digital Capabilities - As part of the coursework component of this module, students will engage with large and complex datasets (‘big data’) and will develop their computational skills in analysing this data using state-of-the-art computational languages.
• Employability - The module students to work as part of a team to complete professional project work. Students are given significant responsibility for planning the project work and work together in small groups to produce a succinct journal article report and a presentation summarising the work. The module, therefore, represents a key opportunity to practise and develop problem solving skills.
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Physics BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Physics with Astronomy BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Physics with Nuclear Astrophysics BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Physics with Quantum Computing BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Mathematics and Physics BSc (Hons) | 2 | Optional | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2024/5 academic year.