BIOCHEMISTRY: BUILDING BLOCKS OF LIFE - 2025/6

Module code: BMS1030

Module Overview

In this module students will be taken on a learning journey through protein structure and function, emphasising their importance in the biochemical processes which occur within living cells. Students will explore the contributions of lipid molecules and sugars to cellular ATP production, and will be introduced to the important role that the TCA cycle and electron transport systems have in production of ATP.  Students will undertake practical classes which highlight and develop the concepts taught within the module, and which will enhance their understanding of the key concepts.  

Module provider

School of Biosciences

Module Leader

ZHANG Qibo (Biosciences)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 4

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 86

Lecture Hours: 12

Tutorial Hours: 12

Laboratory Hours: 6

Guided Learning: 24

Captured Content: 10

Module Availability

Semester 2

Prerequisites / Co-requisites

BMS1060: Biological chemistry and cell biology

Module content

Indicative content includes:


  • Proteins and enzymes

  • Carbohydrates and glycolysis

  • Lipids and oxidation

  • TCA cycle

  • Electron transport and ATP synthesis

  • Integration of metabolic pathways


Assessment pattern

Assessment type Unit of assessment Weighting
Coursework ONLINE EXERCISES 20
Coursework ONLINE EXERCISES 20
Examination Online ONLINE 60 MINUTE MCQ EXAM WITHIN 4 HOURS 60

Alternative Assessment

If a student misses the two practicals there are online simulations and example data they can use to complete the worksheet.

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate a deep understanding of the fundamental principles around molecular biochemistry and cellular energy generation.

 

Thus, the summative assessment for this module consists of:

Two short pieces of coursework (in the form of smart worksheets) related to the practicals, 20% each, addresses learning outcomes 2 & 7

One exam with multiple choice questions, 60%, 75 minutes, addresses learning outcomes 1-6

 

Formative assessment

Formative assessment will be through online MCQs and within practical classes and formative workshops

 

Feedback

Feedback will be continuous and linked to formative assessments, practical classes and workshops. Lecture time will be devoted to feedback on formative assessments.

Module aims

  • Develop confidence and competence with practical and analytical skills in key biochemical methods.
  • Provide a breadth of understanding of the levels of protein structure, and how amino acids infuence the three dimensional folding of protein molecules.
  • Provide a breadth of undertsanding of enzyme kinetics and mechanism of reaction.
  • Provide a breadth of understanding of the structure and function of lipid molecules and their synthesis, in particular the role of lipids in the generation of cellular energy.
  • Provide a breadth of understanding of the use of glucose in glycolysis and the importance of this process in the generation of cellular energy.
  • Provide a breadth of understanding of the essential role of the TCA cycle in maximising the yield of cellular enery from biological fuels.
  • Provide breadth of understanding of the process of electron transport and its importance in synthesising ATP, in addition to a comparison between light independent photosynthesis and the mitochondrial electron transport chain.

Learning outcomes

Attributes Developed
001 Protein structure and function ¿ Describe the primary structure of a protein, and explain how this influences the secondary, tertiary and quaternary structures. KC
002 Enzyme kinetics ¿ Describe the concepts of Km and Vmax, and explain how these parameters can be derived from simple experimental data KCPT
003 Glycolysis ¿ Discuss key regulatory points within glycolysis and explain the importance of glycolysis within cellular ATP generation KC
004 Lipids ¿ Highlight the role of lipids as a source of acetyl-coA for cellular metabolism, and explain their role in long term energy generation. KC
005 TCA cycle ¿ Discuss the central role of the TCA cycle within cellular metabolism and explain how it maximises the production of ATP from sources of cellular fuel. KC
006 Electron transport chain ¿ Compare and contrast the generation of ATP from the mitochondrial and chloroplast electron transport chains KC
007 Practical skills: Build on techniques introduced in first semester, become competent in new techniques including separation of biological molecules and analyse data generated. KCPT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:

Enhance and develop the students understanding of biological reactions as processes and as parts of a larger whole. 

The learning and teaching methods include:


  • lectures

  • tutorials

  • laboratory practicals

  • captured content

  • independent learning


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: BMS1030

Other information

Resourcefulness & resilience: Part of the assessment is coursework based on a laboratory practical. Students must manage their own time in the lab effectively and react in a professional way when experiments do not go according to plan. Formative quizzes are provided for students to evaluate their own learning and they are encouraged to use their own notes and other resources to correct any wrong answers.

 

Global & cultural capabilities: Inherited diseases that affect metabolism will be discussed, and students will be expected to understand how and why prevalence changes in different areas across the globe and in different cultural backgrounds.

 

Digital capabilities: Students use the Virtual Learning Environment extensively and communicate with staff and each other through the discussion board. Computer simulations of laboratory equipment and techniques are used to prepare for practicals. The coursework uses online smart worksheets where students will input and analyse laboratory data and draw graphs through the use of new software.

 

Employability: Practicals introduce students to fundamental “wet lab” skills which are required for almost any lab-based career. They also enhance their skills in data analysis and handling numerical data, which are very transferable to any career. Clinical applications of concepts/practical skills encountered are highlighted.

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Nutrition BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Food Science and Nutrition BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Sport and Exercise Science BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Nutrition and Dietetics BSc (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2025/6 academic year.