SEMICONDUCTOR PHYSICS AND TECHNOLOGY - 2025/6

Module code: PHY3057

Module Overview

This module develops upon the introduction to semiconductors provided towards the end of Solid-State Physics (PHY2068), exploits principles developed in Quantum Physics (PHY2069) and expands upon the laser principles introduced in From Atoms to Lasers (PHY2061). The module introduces the important physics underlying semiconductor materials and devices, discusses methods for design and characterisation of semiconductors and introduces the key technology and applications of importance today, such as semiconductor lasers for optical communications, along with a discussion of future directions in semiconductor-based photonic devices.

Module provider

Mathematics & Physics

Module Leader

MURDIN Benedict (Maths & Phys)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 107

Lecture Hours: 22

Tutorial Hours: 11

Guided Learning: 10

Module Availability

Semester 1

Prerequisites / Co-requisites

The module will assume prior knowledge equivalent to the following modules. If you have not taken these modules you should consult the module descriptors Level HE2 (FHEQ Level 5) From Atoms to Lasers; Electromagnetism; Electromagnetism, Scalar and Vector Fields; Quantum Physics, Solid State Physics.

Module content

Indicative content includes:

 

Introduction to Semiconductor Physics and Technology

Revision of background solid-state physics and relevance to current and emerging technologies.

 

Band Structure Theory

Recap of Bloch theory, introduction to other models of band formation in solids with key examples, introduction to effective mass, interpretation of electronic band-structure and important band-structure concepts for device applications.

 

Semiconductor Fundamentals and introduction to devices

Properties of widely exploited semiconductors; group IV (e.g. Si) and III-V compounds (e.g. GaAs)), alloying in conventional and exotic semiconductors, impurities and artificial doping of semiconductors, charge carriers in bands (Fermi-Dirac and Boltzmann distributions), effective density of states, Fermi energy in intrinsic and extrinsic semiconductors, p-n junctions and diode behaviour.

 

Introduction to Electronic and Photonic Devices

Basics of transistor physics (bipolar junction transistors and field effect transistors), review of optical transitions (emission and absorption) in semiconductors and the Einstein relations, photodetectors and their applications, light-emitting diodes.

 

Semiconductor Lasers and Heterostructures

Stimulated emission and optical gain, threshold gain and lasing, laser characteristics, Quantum Well Lasers, brief review of semiconductor engineering approaches (MOVPE and MBE growth techniques), single mode lasers and their applications in optical fibre communications and sensing.  

 

Measurement of Optical and Electronic Properties

Band electrons in an electric field, band electrons in a magnetic field, cyclotron frequency, the Hall effect including contributions of multiple charge carriers, temperature dependence of charge transport, scattering mechanisms. Semiconductors in the high magnetic field limit, which includes Landau levels, conductivity tensors, quantum oscillations, localised and extended states and the quantum Hall effect. A brief description of optical absorption and excitons, magneto-optics and angle resolved photo-electron spectroscopy.

 

Mesoscopic Physics of Semiconductor

Quantum conductance, the Landauer formula and Landauer-Büttiker Formulism, weak localisation, Aharonov-Bohm effect and the single electron transistor.

 

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework Coursework Assignment 30
Examination Written Examination (within 4 hr window) 70

Alternative Assessment

None.

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate



  • Analytical ability to enable solution of unseen problems in both coursework and exam.


  • Subject knowledge by recall of both “textbook” theory and important research articles in the exam.


  • Ability to generalize text-book theory by open-ended research component in the coursework.



 

Thus, the summative assessment for this module consists of:



  • A 2-hour exam weighted at 70%. In Part A answer all questions (30 points); In Part B answer two questions out of three (15-points each). If all three questions in Part B are attempted only the best two will be counted.


  • Coursework assignment study on themed topic, weighted at 30%

     

    Formative assessment and feedback

  • Students will receive verbal feedback on progress with problems in tutorials and model solutions to the tutorial questions.



 

Module aims

  • Provide the student with a detailed understanding of the principles and operation of semiconductor devices
  • Enable the student to understand the methods by which semiconductors may be produced and characterised
  • Illustrate how groundbreaking physics has led to advanced technologies

Learning outcomes

Attributes Developed
001 Exhibit an understanding of semiconductor band structure and use this to predict the electronic and optical properties of semiconductors KC
002 Explain how semiconductor heterostructures are designed and manufactured using molecular beam and metal organic chemical vapour deposition techniques KPT
003 Understand the physics of quantum confinement and its practical use in determining semiconductor properties and in developing device technology KCP
004 Relate the requirements of photonic systems to semiconductor device design     PT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning


The learning and teaching strategy is designed to provide:



  • comprehensive theoretical treatment of semiconductor materials and devices.


  • knowledge of the design of semiconductor materials and devices


  • knowledge about characterisation of semiconductors using experimental measurements



 

The learning and teaching methods include:


  • Delivery of module content through lecture classes using a combination of board- and powerpoint based delivery including interactive Q&A with the class and online content.




  • Tutorial classes based upon worked problems which the students will attempt outside of class time and discussed during the tutorial periods.



 

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHY3057

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2025/6 academic year.