# CONTROL & DYNAMICS - 2021/2

Module code: ENG3166

## Module Overview

This module provides an introduction (with examples of applications) to the fundamental theory of control systems engineering alongside a comprehensive overview of the methods of analysis of vibration systems and ways to employ to reduce vibrations is provided.

### Module provider

Mechanical Engineering Sciences

GRUBER Patrick (Mech Eng Sci)

### Module cap (Maximum number of students): N/A

Independent Learning Hours: 95

Tutorial Hours: 11

Guided Learning: 11

Captured Content: 33

Semester 1

## Prerequisites / Co-requisites

Incoming exchange students please note: ENG2123 Control and ENG2088 Solid Mechanics 1

## Module content

Indicative content includes:

Control

• System dynamic performance analysis and control system design

• Control systems using three-term PID controllers

• Control system simulation using Matlab-Simulink

• Fundamentals of state-space control

• State-space modelling of dynamic systems

Dynamics

Vibration of discrete systems

• Undamped free and forced vibration of a two-degree of freedom system

• Damped and undamped vibration absorbers

Vibration of continuous systems

• Lateral vibration of a string

• Longitudinal vibration of a bar

• Lateral vibration of a beam

• Whirling of shafts

## Assessment pattern

Assessment type Unit of assessment Weighting
Coursework CONTROL COURSEWORK 20
Examination Online ONLINE EXAM 24HRS (OPEN BOOK) 80

NULL">

## Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate

understanding of scientific principles, methodologies and mathematical methods as well as the ability to describe particular systems and processes in the final examination. The in-semester test allows students to demonstrate that they can solve vibration problems within a given time. The control-related coursework tests research skills and report writing as well as their ability to develop control models and comment critically on the assumptions and limitations inherent in their application.

Thus, the summative assessment for this module consists of:

• In-semester test            [ Learning outcomes 3, 4 ]                 (40 min test)      {15%}

• Control coursework        [ Learning outcomes 1, 2 ]                 (9 hours)            {15%}

• Examination                  [ Learning outcomes 1, 2, 4, 5, 6 ]      (2 hours)           {70%}

Formative assessment and feedback

• Formative verbal feedback is given in tutorials

• Written feedback is given on the coursework assessments

## Module aims

• a working knowledge of classical linear feedback control that extends to systems design concepts
• a systematic understanding and critical awareness of free and forced vibration of two-degree of freedom systems
• a comprehensive knowledge of vibration absorber design
• a deep understanding and awareness of vibrations of real structures
• a knowledge of the analytical methods of investigating vibration of continuous systems

## Learning outcomes

 Attributes Developed 001 Design and analyse control systems which may be encountered in mechatronic products and industrial systems (SM1b/m, EA1b) KC 002 Analyse, model and predict control system performance from the problem specification (EA1b-4b) KC 003 Identify free and forced discrete vibration systems and analyse them using first principles (SM1b/m, EA2) KC 004 Explain the principles of vibration absorbers and design and assess them (EA1b-4b, G1) KCT 005 Describe and apply the procedures required to analyse discrete and continuous systems (EA1b) KCT 006 Analyse the vibration of continuous systems using analytical techniques (SM1b/m,EA1-4b,G1) KC

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

## Methods of Teaching / Learning

The learning and teaching strategy is designed to:

introduce the design and analysis principles of control and vibrations systems through theory with worked examples. This is delivered principally through lectures and tutorial classes, and includes an in-semester test on vibrations and a group conducted control-related coursework involving the development of a Matlab/Simulink model of a basic system.

The learning and teaching methods include:

• 3 hours lecture per week x 11 weeks

• 1 hour tutorial (in groups) x 11 weeks

• In-semester test (40 min test, 9 hours preparation)

• Control coursework (9 hours)

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Upon accessing the reading list, please search for the module using the module code: ENG3166

## Programmes this module appears in

Programme Semester Classification Qualifying conditions
Automotive Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Automotive Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Automotive Engineering (Dual degree with HIT) BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Mechanical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Biomedical Engineering BEng (Hons) 1 Optional A weighted aggregate mark of 40% is required to pass the module
Biomedical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2021/2 academic year.