# INTRODUCTION TO BIOMECHANICS - 2022/3

Module code: BMS1046

Module Overview

This module introduces the students to the principles of mechanics, and their application in the quantitative analysis of physical activity.

Module provider

School of Biosciences and Medicine

SENINGTON Billy (Biosc & Med)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 4

JACs code: B830

Module cap (Maximum number of students): N/A

Independent Learning Hours: 55

Lecture Hours: 11

Tutorial Hours: 11

Laboratory Hours: 8

Guided Learning: 50

Captured Content: 15

Module Availability

Semester 2

Prerequisites / Co-requisites

None

Module content

Indicative content includes:

• Fundamental concepts in mechanics: Mass and Force:
o Distributed and concentrated forces, internal and external forces
o Force vector; system of forces; equilibrium of concurrent  forces.
o The concept of the centre of mass; calculation of the human body centre of mass position using anthropometric tables.
• Kinematics of linear motion.
o Position, displacement, velocity, and acceleration.
o Uni-axial and bi-axial motion:
¿ free fall
¿ ballistic projectile motion
• Newton’s laws of mechanics, forward dynamics:
o Free body diagrams and reaction forces
o Ground reaction force in walking and running
o Analysis of the centre of mass motion in walking, running, and jumping
• Impulse and Momentum; Work, Energy, and Power
o Kinetic, Potential and Elastic energy of the human body
o Energy fluctuation during  the walking and running cycles
• Experimental methods for the analysis of kinematics and dynamics of human motion:
o Linear position transducers, Camera-based motion tracking systems, Force plates.
o Applications for the analysis of walking, running, and jumping
• Moment of force and equilibrium of material objects.
o Conditions of static equilibrium for material objects
o The concept of the centre of gravity; experimental measurement of the centre of gravity position using the reaction board.
o The static analysis of musculoskeletal system.
¿ Joint moments, joint reaction forces, and muscle forces in equilibrium
¿ Quasi-static analysis of lifting

Assessment pattern

Assessment type Unit of assessment Weighting
Practical based assessment PRACTICAL LABORATORY REPORT 50
Practical based assessment ONLINE PRACTICAL 50

Alternative Assessment

As alternative to failed practical reports, students will be provided with practical data to evaluate and discuss as a new report.

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate that they have developed a good understanding of the fundamental principles mechanics and its application for the analysis of physical activity and sports techniques.

Thus, the summative assessment for this module consists of:

·         Lab report   [Learning outcomes 1, 2,3,4 ]                                       (15 hours)                     [40%]

·         Examination  [Learning outcomes 1, 4 ]                                           (2 hours)                       [60%]

Formative assessment and feedback

·         Formative verbal feedback is given in tutorials and during laboratory sessions

·        Written feedback is given for the lab reports

Module aims

• An understanding the core concepts of mechanics such as mass, force, velocity, acceleration, work, energy, and power.
• The skills to apply the fundamental laws of mechanics such as Newton's laws and conservation of energy to perform quantitative analysis of human body motion and equilibrium
• The ability to practically apply the underpinning theoretical concepts to design experiments and analyse experimental data related to physical activity

Learning outcomes

Attributes Developed
1 Understand the laws of mechanics and their implications to a range of situations related to sport, exercise, and physical activity in general. C
2 Perform experments in order to analyse activities such as walking,running, and jumping. KCT
3 Use laboratory equipment such as motion tracking systems, force plates, and linear position transducers. P
4 Process and analyse experimental data, and present the results in a clear an coherent manner PT

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to give the student an introduction to the field of biomechanics with a combination of lectures covering the theoretical foundations, tutorial sessions focusing of quantitative problem solving skills, and practical laboratory session.

The learning and teaching methods include:

• 2 hours lecture per week x 11 weeks
• 1 hour tutorial x 11 weeks
• Four 2 hour laboratory sessions

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.