POWER ELECTRONICS - 2022/3

Module code: EEE3026

Module Overview

Expected prior learning: Modules EEE2033 – Circuits, Control and Communications, or equivalent learning. Knowledge of linear systems and of the basics of control engineering is particularly helpful.

Module purpose: This module aims to develop a better understanding of transistor amplifiers, power semiconductor switching devices and various power converters. A detailed analysis of power converters like AC to DC phase controlled rectifiers, AC to AC, DC to DC converter & Pulse Width Modulated (PWM) inverters will be provided. In order to develop a broader understanding of this subject, a few domestic & industrial applications will be taught in this module.

Module provider

Computer Science and Electronic Eng

Module Leader

SPOREA Radu (CS & EE)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 6

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 96

Lecture Hours: 11

Tutorial Hours: 11

Guided Learning: 10

Captured Content: 22

Module Availability

Semester 2

Prerequisites / Co-requisites

None.

Module content

Indicative content includes the following:

[1] Power Semiconductor Switches and related electronic devices: Concept of power electronics, Basic structure, Switching characteristics and I-V characteristics of Thyristors, GTOs, Triacs, Diodes and Zener Diodes, BJTs and Design examples.

[2] Transistor amplifiers: CE, CB and CC configuration; AC and DC models and analysis; input and output impedances; coupling and decoupling; tuned amplifiers; multistage amplifiers. Design Examples.

[3] Other transistor circuits: current mirrors; differential stages; linear regulators. Design examples.

[4]  AC to DC Phase Controlled Rectifiers: Principle of phase control, Single-phase half-wave & full-wave converters, Semi-converters and Design Examples

[5] Practical AC to DC Rectifiers: Dual converters, Three-phase converter system using diodes, Three-phase full bridge rectifiers and Design Examples.

[6] DC to AC Converters: Single-phase voltage source bridge inverters, Pulse-Width Modulated inverters and Design examples.

[7] DC to DC Converters: Principles of operation, Control strategies, Types of Choppers, Practical switched mode converters, Buck converter, Boost converter, Buck-Boost Converter and Design examples.

[8] AC Voltage Converters: Types of ac voltage controllers, Single-phase voltage controller and Design examples.

[9] Feedback Control for Converters: Converter models for feedback, Voltage-mode & current-mode controls for DC to DC converters, Introduction to state-space modelling for converters.

[10] Applications: Voltage regulation, Contactors, Uninterrupted power supplies, Introduction to HVDC transmission, A case study: Cross-channel HVDC link.

Assessment pattern

Assessment type Unit of assessment Weighting
Examination Online ONLINE (OPEN BOOK) EXAM WITHIN 4HR WINDOW 100

Alternative Assessment

Not applicable: students failing a unit of assessment resit the assessment in its original format.

Assessment Strategy

The assessment strategy for this module is designed to provide students with the opportunity to demonstrate the learning outcomes. The examination will assess the analytical and problem solving skills, background understanding of amplifiers, electrical power systems and power conversion techniques and extend of transferable and professional skills that are relevant to the power industry.

 

Formative assessment and feedback

Students will receive formative assessment/feedback in the following ways:

·         During lectures, by question and answer sessions

·         During tutorials/Problem based learning sessions
 

Summative assessment 

Summative assessment will consist of:

·         A 4-hour open-book examination submitted online

Module aims

  • The module introduces analogue electronic device operation, including transistor amplifiers and power electronic switching devices. It covers power conversion techniques for various domestic and industrial applications.

Learning outcomes

Attributes Developed
003 Evaluate the basic operations of power semiconductor switches used for power conversion KC
004 Apply the basic principles of power electronics switching devices for designing converters KC
005 Analyse and design AC to DC, DC to AC, DC to DC and AC to AC converters.  KP
006 Demonstrate an understanding of power conversion techniques for various practical applications.   KPT
001 Analyse and design simple transistor circuits utilising their static and dynamic characteristics. KC
002 Describe the features and application of a range of transistor circuit configurations. Discuss circuit limitations and imperfections. KC

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to achieve the following aims.



  • Learning through regular lectures from Week 1 to 10. These lectures will include the problem solving sessions and in-class discussions.


  • Peer discussion and feedback session after formative assessment in latter weeks.


  • Prepare for summative assessment through intensive in-class revision during revision week.


  • Lecture notes and pre-recorded material will be provided, and students are expected to do independent learning in addition to ane ahead of attending lectures and tutorials.



 

Learning and teaching methods include the following.



  • 2 hours lecture+tutorial in-person sessions per week x 10 weeks which includes class discussion and problem solving sessions.


  • 2 hours in-class revision in revision week.


Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: EEE3026

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Electronic Engineering with Computer Systems BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electrical and Electronic Engineering BEng (Hons) 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Nanotechnology BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Nanotechnology MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems BEng (Hons) 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Space Systems MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electrical and Electronic Engineering MEng 2 Compulsory A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering with Computer Systems MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module
Electronic Engineering MEng 2 Optional A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.