SCIENCE PRINCIPLES FOR ENGINEERS - 2022/3

Module code: ENG1080

Module Overview

This module is designed to give students entering the Chemical Engineering programmes a sufficient grounding in Physics, Chemistry and Cell Biology.

An introduction of certain aspects of Physics is necessary as background to the fluid and particle mechanics taught in the course.

An introduction to the essential basics of cell biology and chemical kinetics is required by all chemical engineers working in the environmental, pharma and related industries. We start with an overview of cell biology and biochemistry. Then we take a closer look at bacteria, fungi and mammalian cells, how they work, and how they behave and reproduce. We look at industrial processes that use, exploit or produce these cells. We introduce the concepts of solution properties and chemical, enzyme and microbial kinetics.

An introduction to certain aspects of chemistry is necessary as a preparation for the Industrial Chemistry module and as a background in chemical kinetics for the reaction engineering modules.

Module provider

Chemistry and Chemical Engineering

Module Leader

BUSSEMAKER Madeleine (Chst Chm Eng)

Number of Credits: 15

ECTS Credits: 7.5

Framework: FHEQ Level 4

Module cap (Maximum number of students): N/A

Overall student workload

Independent Learning Hours: 96

Lecture Hours: 11

Tutorial Hours: 11

Guided Learning: 10

Captured Content: 22

Module Availability

Semester 1

Prerequisites / Co-requisites

None.

Module content

Indicative content includes:

ENGINEERING PHYSICS

Newton’s Laws of Motion in words and in equation form.

Position, velocity and acceleration in Cartesian and Polar coordinates.

Motion of a point mass.

Solution of Newton’s Laws of Motion to obtain the trajectory, using appropriate initial conditions.

Work, energy and power.

Introduction to rotational equivalents of Newton’s Laws

 

ENGINEERING BIOLOGY

Classification and evolution of cells

Are bacteria, yeast, plant, insect and mammalian cells related?

Basic cell biology

Classification by structure and function

Basic biochemistry

What chemistry do cells do and how do they do it?

Amino acids and proteins

Nucleic acids, DNA and RNA

Enzymes: classification, kinetics and inhibition.

Prokaryotics cells

Industrially relevant bacteria and thermophiles

Filamentous soil bacteria and antibiotics

Organelles of Eukaryotic cells

Main structures and functions

Yeasts, plant and mammalian cells

Cell reproduction

Budding and fission

The eukaryotic cell cycle

Introduction to bioprocessing and bioreactors and microbial kinetics – Monod

(the above Biology material will be integrated in actual bioprocess and biochemical engineering examples/problems)

 

ENGINEERING CHEMISTRY

Introduction and nomenclature, reaction rate, order and rate constant

Reversible and irreversible reactions

Reaction equilibria

Integrated rate equations

Experimental determination of reaction order and reaction order calculations

Complex reactions - simultaneous (parallel) and consecutive (series)

Effect of temperature on rate constant – Arrhenius' equation

Catalysis

Assessment pattern

Assessment type Unit of assessment Weighting
Coursework COURSEWORK 20
Examination 2HR INVIGILATED EXAMINATION 80

Alternative Assessment

N/A

Assessment Strategy

The assessment strategy is designed to provide students with the opportunity to demonstrate their knowledge and analytical skills over the full range of module material and to encourage progressive learning.

Thus, the summative assessment for this module consists of:


  •   Essay and presentation in a biochemical/chemical engineering research project-20% (LO1, LO2, LO3 K, T, P)

  •   Examination – 80%, 2 hours, two sections, (LO1-8, K, C)



Formative assessment

Examples sheets for biology, chemistry and physics (with numerical answers were appropriate)

Feedback

Verbal feedback during tutorial session, written feedback from Essay and Coursework

Module aims

  • Establish a basic appreciation of cell structure and function and their relevance to modern Chemical Engineering
  • Make students aware of the importance and variety of products and processes that depend on cell biology
  • Introduce structural and functional concepts in pro- and eukaryotes
  • Familiarise students with basic concepts of biochemistry for cell biology
  • Introduce students to the basic concepts of kinetics in chemical, biochemical and microbial systems.
  • Establish a firm basis for subsequent modules in Industrial Chemistry, Reaction Engineering and Biochemical Engineering

Learning outcomes

Attributes Developed
001 Distinguish between the function of different biological systems and cell organelles (For example ability to distinguish between pro- and eukaryotic cells, describe the roles of all the major structural components of the eukaryotic cell, compare and contrast DNA and RNA, outline the main processes of cell reproduction, describe how proteins are manufactured and sent to the correct location within or outside the cell describe the main modalities of membrane transport) K
002 Describe and classify enzymes and enzymatic reactions (For example, derive and use Michaelis-Menten expressions for enzyme kinetics, understand the way enzymes interact with their environment). KT
003 Design and appreciate simple bioengineering processes based on simple biological knowledge (For example, appreciate the ways cells interact with and move within their environment, derive and use Monod kinetics for simple microbial systems). KCP
004 Derive and describe basic chemical reactions (For example, derive and use homogeneous chemical reaction kinetics including both free radical and catalysed reactions, generate both differential and integrated rate equations for homogeneous chemical reactions). KC
005 Appreciate the relevance of chemical equilibrium to the requirements of chemical processes KCP
006 Appreciate the universal application of Newton's Laws in everyday engineering KCP

Attributes Developed

C - Cognitive/analytical

K - Subject knowledge

T - Transferable skills

P - Professional/Practical skills

Methods of Teaching / Learning

The learning and teaching strategy is designed to:


  • Take students logically through the challenging material associated with fundamentals in biology and biological engineering, physics and chemistry.

  • To ensure a logical and progressive learning experience

  • To allow students to practice their skills on a series of real life tutorial problems in a supportive environment.



The learning and teaching methods include:


  • Lectures                                 1 hour per week for 11 weeks

  • Tutorials                                 1 hour per week for 11 weeks

  • Independent Learning            8 hours per week for 12 weeks (average)



 

Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.

Reading list

https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENG1080

Programmes this module appears in

Programme Semester Classification Qualifying conditions
Chemical and Petroleum Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical Engineering BEng (Hons) 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module
Chemical and Petroleum Engineering MEng 1 Compulsory A weighted aggregate mark of 40% is required to pass the module

Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2022/3 academic year.