NUMERICAL AND STATISTICAL METHODS - 2023/4
Module code: ENG2106
Module Overview
Civil Engineers routinely make use of software tools for calculations on physical systems, ranging from structural analysis, to soil mechanics and fluid dynamics. This module provides an introduction to the numerical and statistical methods underlying many of these tools, including Finite Element and Finite Difference Methods as well as linear regression.
The module is hands-on: students will be introduced to MATLAB and learn to write their own programs to apply the methods encountered in the module.
Module provider
Sustainability, Civil & Env Engineering
Module Leader
KAMPERIDIS Vasilis (Sust & CEE)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 5
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 55
Seminar Hours: 12
Tutorial Hours: 15
Guided Learning: 44
Captured Content: 24
Module Availability
Semester 1
Prerequisites / Co-requisites
N/A
Module content
The module sits within the core subject of mathematic and covers the following areas:
- Fundamental programming concepts: variables, functions, control structures, vector and matrix data structures
- Syntax, semantics and good programming practice.
- Using the MATLAB programming language and integrated development environment
- Solution of Ordinary Differential Equations by Runge-Kutta and associated methods
- Solution methods for simultaneous linear equations
- Principles and application of the Finite Difference Method for solving Ordinary and Partial Differential Equations
- Principles and application of the Finite Element Method applied on truss structures
- Principles and application of (multiple) linear regression, including confidence and significance
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | ASSIGNMENT 1: PROGRAMMING FUNDAMENTALS | 30 |
Coursework | ASSIGNMENT 2: PROGRAMMING APPLICATION | 30 |
Examination | EXAMINATION (2 hours) | 40 |
Alternative Assessment
N/A
Assessment Strategy
Summative assessment
The summative assessment for this module consists of two coursework assignment and an exam. In the first coursework assignment, students demonstrate fundamental programming skills in MATLAB, including the use of functions, variable, matrix and vector data structures, control structures and plotting (learning outcomes 003 and 005). In the second coursework, students apply their programming skills to implement a numerical method that they have independently researched (learning outcomes 004 and 005). The end-of-semester exam assesses the element of theoretical understanding of numerical and statistical methods (learning outcomes 001 and 002).
Formative assessment and feedback
During computer lab based tutorials students have an opportunity to receive verbal feedback on their work. Additionally, students can test their understanding and get immediate feedback through formative assessment in the form of weekly multiple-choice tests.
Module aims
- Knowledge and experience of the use of standard numerical and statistical methods to solve complex engineering problems
- Knowledge and experience of using computer programming as a tool to solve engineering problems
Learning outcomes
Attributes Developed | Ref | ||
---|---|---|---|
001 | Proficiently and critically use a range of numerical methods for the analysis and solution of engineering problems, including an understanding of alternative approaches and their limitations | KC | SM2B, SM2M, SM5M, EA3B, EA3B, P2B |
002 | Proficiently and critically use multiple linear regression for data analysis | KC | SM2B, SM2M, SM5M, EA3B, EA3B, P2B |
003 | Use MATLAB and programming as a tool to help solve engineering problems | KC | SM2B, SM4M, EA3B, P2B |
004 | Move towards independent research, application and analysis of numerical methods for engineering problems | KCT | P4, G1 |
005 | Convey technical information in a written report to a professional standard | PT | D6 |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
Lecture notes – and supporting captured content – are used to introduce key concepts and theoretical background. The main learning however, will take place as students complete weekly exercises that bring the newly learned concepts and knowledge to practice. Weekly tutorial sessions are used to provide feedback and discuss these exercises. The first four weeks of the module are dedicated to programming fundamentals. In these weeks the tutorials are longer than usual (two hours instead of one) because of the importance of feedback in this stage of learning. The coursework provides further exercise in developing programming skills and the ability to use these skills to solve numerical problems. A staggered approach is followed, where the first coursework assignment covers fundamentals and the second requires independent inquiry and application of techniques. Weekly seminars are used to reflect on learning including coursework activity, address and re-emphasize salient points in the captured content, provide additional context and give guidance on learning activities.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: ENG2106
Other information
Surrey's Curriculum Framework is committed to developing graduates with strengths in Employability, Digital Capabilities, Global and Cultural Capabilities, Sustainability and Resourcefulness and Resilience. This module is designed to allow students to develop knowledge, skills and capabilities in the following areas:
Digital Capabilities: As a module with a strong focus on numerical methods and computer programming, the development of Digital Capabilities is central.
Resourcefulness and Resilience: The coursework requires proactive engagement with technical literature to gain knowledge on a new topic with sufficient depth to then use the knowledge to solve a problem. This emphasis on the development of skills more than factual knowledge resonates well with the Resourcefulness and Resilience pillar of the framework.
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Civil Engineering BEng (Hons) | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Civil Engineering MEng | 1 | Compulsory | A weighted aggregate mark of 40% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.