RADIATION PHYSICS - 2023/4
Module code: PHYM032
Module Overview
Lectures provide a detailed and systematic overview of atomic and nuclear physics including basic energetics of radioactive decay. An introduction on interactions of radiation with matter and introductory material describing detector operation.
Module provider
Mathematics & Physics
Module Leader
PODOLYAK Zsolt (Maths & Phys)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 117
Tutorial Hours: 11
Captured Content: 22
Module Availability
Semester 1
Prerequisites / Co-requisites
None
Module content
Lecturer
Title
Lecture Hours
Prof PH Regan
Atomic physics: Bohr model, Pauli Exclusion Principle, de Broglie hypothesis, Heisenberg Uncertainty Principle, electronic structure of atom, x-ray spectra; Moseley’s law, x-ray fluorescence and x-ray fluorescence yield, Auger electrons. Experimental evidence for nuclear sizes;
Outline of Rutherford scattering, nuclear excited state energy and mass systematics, nuclear binding energy. Systematic study of nuclear binding energy: Von Weizsäcker Semi-Empirical Mass Formula and Liquid Drop Model, beta decay, energy released during fission of heavy nuclei; Basic phenomena behing the nuclear Shell Model, Woods-Saxon potentials, nuclear spin-orbit interaction,.
Introduction to theory of alpha and beta decay; Geiger-Nuttall Law, electron capture. Gamma emissions. Fission. Radioactive decay through a chain. Production of radionuclides.
24
Dr Z Podolyak
Interactions of radiation with matter, photons, neutrons and charged particles. Attenuation coefficients and the Mixture Rule. Concept of neutron flux and cross-section; the neutron spectrum. The interaction of electrons (and other charged particles) with matter; elastic and inelastic processes, bremsstrahlung and radiative yield, energy dependence. Measurement of radioactivity and standards.
Introduction to radiation detectors, describing the basic function and operation of semiconductor, scintillator and gas detectors, counting statistics, dead time and energy resolution.
9
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
School-timetabled exam/test | CLASS TEST (1 hour) | 30 |
Examination | EXAM (2 hours) | 70 |
Alternative Assessment
N/A
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate their knowledge of concepts behind Radiation Physics.
Thus, the summative assessment for this module consists of:
A 2.0 hours duration examination paper that consists of 5 questions on Radiation Physics. Students will be asked to answer 3 questions from the 5. Full marks in the examination will be equivalent to 70 % of the total marks available in assessment of this module.
A multiple-choice class test in Week 8 . The class test will take one hour and will consist of 10 questions. This will make up 30% of the final module mark.
Formative assessment and feedback
Students will receive feedback on their performance in the take home written coursework test, each test being marked.
Module aims
- To provide the student with a detailed understanding of the structure of matter, radioactivity and different types of ionizing radiation.
- To provide the student with the comprehensive understanding of basic phenomena in atomic and nuclear physics including atomic and nuclear structure, decay mechanisms, electromagnetic quanta, characteristic and continuous X-ray sources. To provide an understanding of radiation counting, nuclear and atomic spectroscopy equipment.
Learning outcomes
Attributes Developed | ||
001 | Systematic understanding of the fundamental processes involved with the interaction of X- and gamma-ray photons, charged particles and neutrons with matter | KC |
002 | Students be able to perform basic radiation shielding calculations and be aware of stopper power and attenuation data bases in the literature | KCP |
003 | Perform investigations of radiation sources and their interactions in media | KCPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
Formal lectures and occasional large group tutorial/question sessions. Teaching given by handouts, data projector and white board presentations and notes.
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM032
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Medical Physics MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Nuclear Science and Applications MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Physics MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.