DIAGNOSTIC APPLICATIONS OF IONISING RADIATION PHYSICS - 2023/4
Module code: PHYM043
Module Overview
Ionising radiation is widely used for diagnostic purposes, and multi-modality imaging is now becoming ubiquitous. The majority of hospital physicists work with ionising radiation and hence the topic is fundamental for anyone entering the profession.
In this module, an introduction is given to imaging systems and image perception. Detailed lectures then cover X-radiography, X-ray computed tomography, radiopharmaceuticals, nuclear medicine. The lectures will be supported by an assessed nuclear medicine practical and by tutorials in image processing and image registration.
Module provider
Mathematics & Physics
Module Leader
SELLIN Paul (Maths & Phys)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Independent Learning Hours: 115
Lecture Hours: 30
Tutorial Hours: 2
Laboratory Hours: 3
Module Availability
Semester 2
Prerequisites / Co-requisites
For students on the MSc Physics programme, having attended PHYM032 Radiation Physics in Semester 1 or having covered equivalent content in previous studies (to be discussed with the Programme Director). For students on the Biomedical Engineering MEng, having attended PHY3045 - Medical Imaging at FHEQ Level 6.
Module content
Indicative content includes:
X-rays, γ-rays, MTF and ROC analysis
Mathematical formulation of the imaging system; impulse response function, stationarity, line spread function, edge spread function, MTF. Usefulness of MTF, modulation input and output, test objects, measure of performance, cascade of MTFs. Perception of detail, visual acuity, resolution criteria. Existence of observer, decision criteria. Construction of the ROC curve and principle of ROC analysis.
X-ray Mammography
Attenuation and scattering of x-ray photons by breast tissues. Contrast, resolution, dose, noise and dynamic range in mammography. The design and performance of the components of the mammographic imaging system: X-ray tube (focal spot size, choice of X-ray spectrum), anti-scatter grid, compression paddle, automatic exposure control and image receptor (screen film, DR and CR systems). Comparison of digital and analog systems for mammography. New developments in mammography: digital breast tomosynthesis and spectral imaging. The NHS Breast Screening Programme - organisation, facts and figures. Quality assurance. Risk/benefit analysis in mammography.
X-ray imaging and analysis
The X-ray tube construction and operational needs.
X-ray scatter in diagnostic imaging and scatter reduction methods.
Applications of medical X-ray imaging.
X-ray Computed Tomography
Fundamental principles of x-ray computed tomography. Reconstruction algorithms. CT equipment and instrumentation: x-ray tube design, filtration, collimation, x-ray detectors. Axial and spiral CT, multi-slice CT. Quality control and performance tests for diagnostic CT. Radiation safety, room design and optimisation of exposure. CT artefacts. Clinical applications of x-ray CT.
Image processing and image registration
Images in the Fourier domain. Object segmentation – thresholding, k-means and region growing, Filtering: Edge enhancement and smoothing filters. Edge detection, 2D morphological operators.
Image registration: rigid and non-rigid techniques; affine and non-affine methods. Application examples in Multi-modality imaging.
Nuclear Medicine
Radionuclide calibrators, sample counters, in-vitro nuclear medicine tests. Gamma camera components, signal processing and corrections. SPECT imaging, reconstruction and corrections. Clinical applications of single photon scintigraphy. Quality assurance in nuclear medicine. Positron Emission Tomography: principles and equipment. Clinical applications of PET.
Radiopharmacy and molecular imaging: Radionuclides - review of decay modes and production methods. Preparation of radiopharmaceuticals - Pharmacopoeial requirements. Overview of radiopharmaceuticals - labelling methodologies. Diagnostic radiopharmaceuticals - selection of radionuclide, localisation mechanisms, clinical applications, protein and peptide based radiopharmaceuticals.
Hospital visit in which students will tour a nuclear medicine department and participate in experiments using gamma cameras and non-imaging equipment.
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | Nuclear Medicine Report | 30 |
Examination | End of Semester Examination (2 hours) | 70 |
Alternative Assessment
An essay on a topic relevant to nuclear medicine will be assigned to students unable to attend the hospital practical. 30%
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate their understanding of both the theory and the practice of the use of ionising radiation for clinical imaging and the implications of different image processing modalities.
Thus, the summative assessment for this module consists of:
2 hour examination, with three questions to be answered out of five.
Report on hospital practical
Feedback
Feedback will be given verbally during classes and the hospital practical. Written feedback on the hospital visit report will be given
Module aims
- Give students both theoretical foundations and practical experience on the main imaging modalities based on ionising radiation.
- Provide students with an awareness of the issues in image processing and registration.
Learning outcomes
Attributes Developed | ||
001 | Describe the general principles of imaging systems and image perception | KC |
002 | Describe and compare the physical principles and key technologies which determine the performance of medical X-ray and gamma ray imaging systems | KC |
003 | Describe and compare the physical principles and key technologies of transmission and emission tomography | KC |
004 | Appraise the quality assurance cycle required for diagnostic X-ray and nuclear medicine equipment and to be familiar with test equipment commonly used for the most important measurements undertaken by physicists in an imaging department | KPT |
005 | Describe the properties, production processes and uptake mechanisms of radiopharmaceuticals for diagnostic applications | KC |
006 | Appraise the suitability of filters for specific applications and apply them to different imaging problems | KC |
007 | Independently apply their knowledge when taking up posts within the Health Service and other related fields (K,T,P) | KPT |
008 | Apply physics techniques to a multidisciplinary context | PT |
009 | Assess the risks involved in a particular application | KPT |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to:
provide students with the theoretical foundations of the current imaging modalities as well as knowledge about instrumentations, procedures and regulations.
give students practical experience in calibration and quality assurance in nuclear medicine give students direct experience of typical filters used in image processing and their effects.
The learning and teaching methods include:
• Formal lectures and occasional large group tutorial/question sessions (typically in 2-3 hour sessions). Teaching given by handouts and white board presentations and notes.
• Image processing computing lab sessions.
• Hospital visits (Nuclear medicine + X-ray imaging units).
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM043
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Medical Physics MSc | 2 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Nuclear Science and Applications MSc | 2 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Biomedical Engineering MEng | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Physics MSc | 2 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.