EXPERIMENTAL AND PROFESSIONAL SKILLS FOR MEDICAL PHYSICS - 2023/4
Module code: PHYM054
Module Overview
The module will provide students with practical skills and background knowledge needed to work in a clinical setting. It includes two seminars/workshop on research ethics and intellectual property and a set of radiation laboratory experiments.
Module provider
Mathematics & Physics
Module Leader
PANI Silvia (Maths & Phys)
Number of Credits: 15
ECTS Credits: 7.5
Framework: FHEQ Level 7
Module cap (Maximum number of students): N/A
Overall student workload
Clinical Placement Hours: 94
Lecture Hours: 5
Tutorial Hours: 12
Laboratory Hours: 39
Module Availability
Semester 1
Prerequisites / Co-requisites
None
Module content
The module includes:
Seminar/workshop on intellectual property and research ethics.
Lectures on the NHS, on electrical safety and on ionising radiation regulations (IRR/IR(ME)R).
Lectures on data handling and report writing skills.
Scripted experiments that students undertake in pairs, one per week. Students undertake 6 one-week experiments. Experiments include alpha, beta and gamma spectroscopy, radiation survey and decontamination, dosimetry, X-ray fluorescence.
An Equality, Diversity and Inclusion Awareness workshop
Assessment pattern
Assessment type | Unit of assessment | Weighting |
---|---|---|
Coursework | Mock Research Proposal (1500 words) | 34 |
Practical based assessment | Lab Report 1 (2000 words) | 33 |
Practical based assessment | Lab Report 2 (2000 words) | 33 |
Practical based assessment | EDI Awareness Engagement | Pass/Fail |
Alternative Assessment
N/A
Assessment Strategy
The assessment strategy is designed to provide students with the opportunity to demonstrate their awareness of research ethics and intellectual property protection as well as their understanding of the functioning of spectroscopy chains and radiation detection processes.
Thus, the summative assessment for this module consists of:
One mock research proposal (2000 words), to be submitted typically in week 9.
Two laboratory reports (2000 words), to be submitted typically in weeks 8 and 12.
Assessment of engagement with the EDI Awareness Workshop: open book quiz with unlimited re-attempts, but it must be passed in order to pass the module.
Formative assessment
During the report writing session, students test their understanding of the correct structure for a lab report by working in group on scoring reports from previous year.
Feedback
Verbal feedback will be given regularly during the sessions. The written feedback from the first laboratory report will inform the submission of the second report.
Module aims
- Provide the student with an understanding of research ethics and intellectual property management.
- Provide the student with the comprehensive understanding of the experimental use of radioactive materials, radiation counting, spectroscopy equipment, dosimetry measurements and standard radiation experimental techniques.
Learning outcomes
Attributes Developed | ||
001 | Achieve a systematic understanding of the fundamental processes involved with the interaction of X- and gamma-ray photons, charged particles and neutrons with matter | KC |
002 | Critically analyse and perform self-directed problem solving of the practical aspects of handling radioactive substances | KPT |
003 | Gain ability to extract qualitative and quantitative information about the emitted radiations | CPT |
004 | Understand basic evaluation of experimental data using standard statistical methods | CPT |
005 | Confidently and safely handle radioactive materials | PT |
006 | Critically apply statistical analysis techniques to specialised radiometric data through appropriate software tools | KPT |
007 | Apply theory to the measurement of various radiation emissions in terms of both dosimetry and spectroscopy | KT |
008 | Maintain a laboratory diary at a level appropriate of a professional scientist | PT |
009 | Provide concise and accurate reporting of findings, including limitations resulting from an appreciation of equipment capability and the availability of calibration standards | PT |
010 | Understand the principles of research ethics and intellectual property and their application to a practical context | PT |
011 | Recognise benefits of equality, diversity and inclusion and identify causes and effects of unconscious bias | T |
Attributes Developed
C - Cognitive/analytical
K - Subject knowledge
T - Transferable skills
P - Professional/Practical skills
Methods of Teaching / Learning
The learning and teaching strategy is designed to:
Expose the students to the implications of research ethics in the context of the National Healthcare Service and medical research with humans/animals through academic-led group discussion of ethical dilemmas.
Allow them to gain practical experience in the handling of laboratory equipment and radioactive sources and relate experiments to the theory seen in lectures.
The learning and teaching methods include:
- Lectures on statistical methods and report writing skills
- Lectures on the NHS and on electrical safety
- Lecture on Ionising Radiation Regulations (IRR) and Ionising Radiation Medical Exposure (IRMER) Regulations
- Seminar on Intellectual Property
- Workshop on Research Ethics
- Scripted experiments, to be carried out in pairs or small groups in 3-hour sessions (two sessions/experiment).
Indicated Lecture Hours (which may also include seminars, tutorials, workshops and other contact time) are approximate and may include in-class tests where one or more of these are an assessment on the module. In-class tests are scheduled/organised separately to taught content and will be published on to student personal timetables, where they apply to taken modules, as soon as they are finalised by central administration. This will usually be after the initial publication of the teaching timetable for the relevant semester.
Reading list
https://readinglists.surrey.ac.uk
Upon accessing the reading list, please search for the module using the module code: PHYM054
Programmes this module appears in
Programme | Semester | Classification | Qualifying conditions |
---|---|---|---|
Medical Physics MSc | 1 | Compulsory | A weighted aggregate mark of 50% is required to pass the module |
Physics MSc | 1 | Optional | A weighted aggregate mark of 50% is required to pass the module |
Please note that the information detailed within this record is accurate at the time of publishing and may be subject to change. This record contains information for the most up to date version of the programme / module for the 2023/4 academic year.